Coupled U-Pb, Lu-Hf and trace element geochemistry of apatite reveals complex magmatic-hydrothermal Nb-REE remobilization of the Neoproterozoic Saint-Honoré carbonatite deposit (Quebec, Canada)

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Hélène Legros , Nils Van Weelderen , Sarah Dare , Stijn Glorie , Michael Higgins , Dany Savard , L. Paul Bédard
{"title":"Coupled U-Pb, Lu-Hf and trace element geochemistry of apatite reveals complex magmatic-hydrothermal Nb-REE remobilization of the Neoproterozoic Saint-Honoré carbonatite deposit (Quebec, Canada)","authors":"Hélène Legros ,&nbsp;Nils Van Weelderen ,&nbsp;Sarah Dare ,&nbsp;Stijn Glorie ,&nbsp;Michael Higgins ,&nbsp;Dany Savard ,&nbsp;L. Paul Bédard","doi":"10.1016/j.lithos.2025.107980","DOIUrl":null,"url":null,"abstract":"<div><div>Niobium and REE are critical resources that are predominantly associated with carbonatite and alkaline complexes. The Saint-Honoré ore deposit, located in Québec, is a major producer of Nb (7 % of world production) with reserves of 630 thousand tons Nb and major REE resources (1058 thousand tons inferred). This deposit is composed of an outer syenite, inner syenite enclaves, multiple Nb-rich carbonatite intrusions and, a central REE-rich carbonatite. The carbonatites exhibit several generations of apatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>(F,OH,Cl)) including a magmatic ‘white’ apatite associated with pyrochlore ((Na,Ca)<sub>2</sub>Nb<sub>2</sub>O<sub>6</sub>(OH,F)) and a late hydrothermal ‘red’ apatite. Trace element geochemistry of apatite reveals a very distinct chemistry for both apatite types. The magmatic carbonatite stage is associated with the main Nb mineralization and is dated at 577 ± 14 Ma (U-Pb) and 580 ± 13 Ma (Lu-Hf), with a typical magmatic carbonatite signature whereas the hydrothermal stage has a mixed signature between carbonatite and external fluids which remobilized Nb-(REE) mineralization at 564 ± 16 Ma (Lu-Hf). While the magmatic and hydrothermal stage ages overlap and are also coeval to our lamprophyre apatite age of 569 ± 29 Ma (U-Pb), the late hydrothermal stage is distinctively marked by higher U, Cl, Ba, Fe, Nb and K concentrations in apatite. The late hydrothermal event is linked to a carbonatite fluid mixed with crustal fluids which may have contributed to the emplacement of the REE mineralization in the late stage of the carbonatite complex. This study also highlights the first detailed data on apatite geochemistry from lamprophyre.</div></div>","PeriodicalId":18070,"journal":{"name":"Lithos","volume":"498 ","pages":"Article 107980"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithos","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024493725000398","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Niobium and REE are critical resources that are predominantly associated with carbonatite and alkaline complexes. The Saint-Honoré ore deposit, located in Québec, is a major producer of Nb (7 % of world production) with reserves of 630 thousand tons Nb and major REE resources (1058 thousand tons inferred). This deposit is composed of an outer syenite, inner syenite enclaves, multiple Nb-rich carbonatite intrusions and, a central REE-rich carbonatite. The carbonatites exhibit several generations of apatite (Ca5(PO4)3(F,OH,Cl)) including a magmatic ‘white’ apatite associated with pyrochlore ((Na,Ca)2Nb2O6(OH,F)) and a late hydrothermal ‘red’ apatite. Trace element geochemistry of apatite reveals a very distinct chemistry for both apatite types. The magmatic carbonatite stage is associated with the main Nb mineralization and is dated at 577 ± 14 Ma (U-Pb) and 580 ± 13 Ma (Lu-Hf), with a typical magmatic carbonatite signature whereas the hydrothermal stage has a mixed signature between carbonatite and external fluids which remobilized Nb-(REE) mineralization at 564 ± 16 Ma (Lu-Hf). While the magmatic and hydrothermal stage ages overlap and are also coeval to our lamprophyre apatite age of 569 ± 29 Ma (U-Pb), the late hydrothermal stage is distinctively marked by higher U, Cl, Ba, Fe, Nb and K concentrations in apatite. The late hydrothermal event is linked to a carbonatite fluid mixed with crustal fluids which may have contributed to the emplacement of the REE mineralization in the late stage of the carbonatite complex. This study also highlights the first detailed data on apatite geochemistry from lamprophyre.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lithos
Lithos 地学-地球化学与地球物理
CiteScore
6.80
自引率
11.40%
发文量
286
审稿时长
3.5 months
期刊介绍: Lithos publishes original research papers on the petrology, geochemistry and petrogenesis of igneous and metamorphic rocks. Papers on mineralogy/mineral physics related to petrology and petrogenetic problems are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信