Learning semantical dynamics and spatiotemporal collaboration for human pose estimation in video

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Runyang Feng , Haoming Chen
{"title":"Learning semantical dynamics and spatiotemporal collaboration for human pose estimation in video","authors":"Runyang Feng ,&nbsp;Haoming Chen","doi":"10.1016/j.neucom.2025.129581","DOIUrl":null,"url":null,"abstract":"<div><div>Temporal modeling and spatio-temporal collaboration are pivotal techniques for video-based human pose estimation. Most state-of-the-art methods adopt optical flow or temporal difference, learning local visual content correspondence across frames at the pixel level, to capture motion dynamics. However, such a paradigm essentially relies on localized pixel-to-pixel similarity, which neglects the <em>semantical correlations</em> among frames and is vulnerable to image quality degradations (<em>e.g.</em> occlusions or blur). Moreover, existing approaches often combine motion and spatial (appearance) features via simple concatenation or summation, leading to practical challenges in fully leveraging these distinct modalities. In this paper, we present a novel framework that learns multi-level semantical dynamics and dense spatio-temporal collaboration for multi-frame human pose estimation. Specifically, we first design a Multi-Level Semantic Motion Encoder using a multi-masked context and pose reconstruction strategy. This strategy stimulates the model to explore multi-granularity spatiotemporal semantic relationships among frames by progressively masking the features of (patch) cubes and frames. We further introduce a Spatial-Motion Mutual Learning module which densely propagates and consolidates context information from spatial and motion features to enhance the capability of the model. Extensive experiments demonstrate that our approach sets new state-of-the-art results on three benchmark datasets, PoseTrack2017, PoseTrack2018, and PoseTrack21.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"626 ","pages":"Article 129581"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122500253X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal modeling and spatio-temporal collaboration are pivotal techniques for video-based human pose estimation. Most state-of-the-art methods adopt optical flow or temporal difference, learning local visual content correspondence across frames at the pixel level, to capture motion dynamics. However, such a paradigm essentially relies on localized pixel-to-pixel similarity, which neglects the semantical correlations among frames and is vulnerable to image quality degradations (e.g. occlusions or blur). Moreover, existing approaches often combine motion and spatial (appearance) features via simple concatenation or summation, leading to practical challenges in fully leveraging these distinct modalities. In this paper, we present a novel framework that learns multi-level semantical dynamics and dense spatio-temporal collaboration for multi-frame human pose estimation. Specifically, we first design a Multi-Level Semantic Motion Encoder using a multi-masked context and pose reconstruction strategy. This strategy stimulates the model to explore multi-granularity spatiotemporal semantic relationships among frames by progressively masking the features of (patch) cubes and frames. We further introduce a Spatial-Motion Mutual Learning module which densely propagates and consolidates context information from spatial and motion features to enhance the capability of the model. Extensive experiments demonstrate that our approach sets new state-of-the-art results on three benchmark datasets, PoseTrack2017, PoseTrack2018, and PoseTrack21.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信