Qiang Lin , Sulin Chen , Hongbin Li , Zhengzong Sun , Zhinan Zhang , Martin Dienwiebel , Michael Moseler , Bin Shen
{"title":"Covalently armoring graphene on diamond abrasives with unprecedented wear resistance and abrasive performance","authors":"Qiang Lin , Sulin Chen , Hongbin Li , Zhengzong Sun , Zhinan Zhang , Martin Dienwiebel , Michael Moseler , Bin Shen","doi":"10.1016/j.ijmachtools.2025.104254","DOIUrl":null,"url":null,"abstract":"<div><div>Next-generation semiconductor materials, including diamond, SiC, and GaN, offer significant advantages for high-power devices. However, the high-performance polishing of these ultrahard materials is limited by insufficient grit wear resistance and low-quality material removal with conventional diamond abrasives. In this study, we report robust integration of flexible graphene armor on diamond abrasives through covalent interfacial bonding for high-efficiency high-quality polishing of ultrahard materials. Utilizing a novel Ga-diamond cellular wetting strategy followed by vacuum heating treatment, we achieved highly scalable production of graphene-armored diamond abrasives with a productivity of 1 kg/L. The employment of graphene-armored diamond abrasives simultaneously improved the polishing efficiency and polishing quality, enabling damage-free atomic-level surface finish and an atomic attrition rate 5 times greater than conventional diamond abrasives. This efficient material attrition is attributed to the robust combination of exceptional intrinsic wear resistance, bonding capability and high flexibility of graphene with the ultrahigh hardness of diamond. The synergy of soft graphene and hard diamond grit provides sufficient material removal capability while simultaneously reducing the polishing damage that is often induced by brittle fracture and extreme local contact pressure with conventional diamond abrasives. This work offers a novel solution that enables high-efficiency high-quality polishing of ultrahard materials with a room-temperature, chemical-free and low-cost mechanical polishing procedure.</div></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"206 ","pages":"Article 104254"},"PeriodicalIF":14.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695525000094","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Next-generation semiconductor materials, including diamond, SiC, and GaN, offer significant advantages for high-power devices. However, the high-performance polishing of these ultrahard materials is limited by insufficient grit wear resistance and low-quality material removal with conventional diamond abrasives. In this study, we report robust integration of flexible graphene armor on diamond abrasives through covalent interfacial bonding for high-efficiency high-quality polishing of ultrahard materials. Utilizing a novel Ga-diamond cellular wetting strategy followed by vacuum heating treatment, we achieved highly scalable production of graphene-armored diamond abrasives with a productivity of 1 kg/L. The employment of graphene-armored diamond abrasives simultaneously improved the polishing efficiency and polishing quality, enabling damage-free atomic-level surface finish and an atomic attrition rate 5 times greater than conventional diamond abrasives. This efficient material attrition is attributed to the robust combination of exceptional intrinsic wear resistance, bonding capability and high flexibility of graphene with the ultrahigh hardness of diamond. The synergy of soft graphene and hard diamond grit provides sufficient material removal capability while simultaneously reducing the polishing damage that is often induced by brittle fracture and extreme local contact pressure with conventional diamond abrasives. This work offers a novel solution that enables high-efficiency high-quality polishing of ultrahard materials with a room-temperature, chemical-free and low-cost mechanical polishing procedure.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).