A computationally efficient policy optimization scheme in feedback iterative learning control for nonlinear batch process

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kaihua Gao , Jingyi Lu , Yuanqiang Zhou , Furong Gao
{"title":"A computationally efficient policy optimization scheme in feedback iterative learning control for nonlinear batch process","authors":"Kaihua Gao ,&nbsp;Jingyi Lu ,&nbsp;Yuanqiang Zhou ,&nbsp;Furong Gao","doi":"10.1016/j.compchemeng.2025.109005","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a computationally efficient feedback iterative learning control (ILC) scheme for nonlinear batch processes. We present a structured framework that delineates the feedback ILC as a composite of two integral components: a state feedback controller and a conventional ILC mechanism. Within this framework, we employ policy search techniques to optimize the feedback component. In parallel, we tackle the feedforward aspect by formulating a stochastic optimal ILC problem. These two components are offline iteratively updated, thereby ensuring convergence under ideal conditions. To account for missing process models in practical scenarios, we incorporate Gaussian process (GP) modeling into our framework. By leveraging the GP model, we extend our iterative optimization approach to a GP-based feedback ILC optimization algorithm that guarantees tractability. We use two numerical examples to demonstrate the merits of our framework, including its fast convergence and effective rejection of disturbances.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"195 ","pages":"Article 109005"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000092","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a computationally efficient feedback iterative learning control (ILC) scheme for nonlinear batch processes. We present a structured framework that delineates the feedback ILC as a composite of two integral components: a state feedback controller and a conventional ILC mechanism. Within this framework, we employ policy search techniques to optimize the feedback component. In parallel, we tackle the feedforward aspect by formulating a stochastic optimal ILC problem. These two components are offline iteratively updated, thereby ensuring convergence under ideal conditions. To account for missing process models in practical scenarios, we incorporate Gaussian process (GP) modeling into our framework. By leveraging the GP model, we extend our iterative optimization approach to a GP-based feedback ILC optimization algorithm that guarantees tractability. We use two numerical examples to demonstrate the merits of our framework, including its fast convergence and effective rejection of disturbances.
非线性批处理反馈迭代学习控制中一种计算效率高的策略优化方案
本文针对非线性批处理过程,提出了一种计算效率高的反馈迭代学习控制方案。我们提出了一个结构化的框架,将反馈ILC描述为两个组成部分的组合:状态反馈控制器和传统的ILC机制。在这个框架中,我们使用策略搜索技术来优化反馈组件。同时,我们通过制定一个随机最优ILC问题来解决前馈问题。这两个组件是离线迭代更新的,从而保证了理想条件下的收敛性。为了解释实际场景中缺失的过程模型,我们将高斯过程(GP)建模合并到框架中。通过利用GP模型,我们将迭代优化方法扩展到基于GP的反馈ILC优化算法,以保证可追溯性。我们用两个数值例子证明了我们的框架的优点,包括它的快速收敛和有效抑制干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信