Data-driven contextual robust optimization based on support vector clustering

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xianyu Li , Fenglian Dong , Zhiwei Wei , Chao Shang
{"title":"Data-driven contextual robust optimization based on support vector clustering","authors":"Xianyu Li ,&nbsp;Fenglian Dong ,&nbsp;Zhiwei Wei ,&nbsp;Chao Shang","doi":"10.1016/j.compchemeng.2025.109004","DOIUrl":null,"url":null,"abstract":"<div><div>Support vector clustering (SVC) is an effective data-driven method to construct uncertainty sets in robust optimization (RO). However, it cannot appropriately address varying uncertainty in a contextually uncertain environment. In this work, we propose a new contextual RO (CRO) scheme, where an efficient contextual uncertainty set called kNN-SVC is developed to capture the correlation between covariates and uncertainty. Using the k-nearest neighbors (kNN) to select a subset of historical observations, contextual information can be integrated into SVC uncertainty sets, thereby alleviating conservatism while inheriting merits of SVC such as polytopic representability and ease of manipulating robustness. Besides, using only a fraction of data samples ensures low computational costs. Numerical examples demonstrate the performance improvement of the proposed kNN-SVC uncertainty set over conventional sets without considering contextual information. An industrial case of gasoline blending shows the usefulness of the proposed approach in producing robust decisions against linearization errors in nonlinear blending.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"195 ","pages":"Article 109004"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000080","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Support vector clustering (SVC) is an effective data-driven method to construct uncertainty sets in robust optimization (RO). However, it cannot appropriately address varying uncertainty in a contextually uncertain environment. In this work, we propose a new contextual RO (CRO) scheme, where an efficient contextual uncertainty set called kNN-SVC is developed to capture the correlation between covariates and uncertainty. Using the k-nearest neighbors (kNN) to select a subset of historical observations, contextual information can be integrated into SVC uncertainty sets, thereby alleviating conservatism while inheriting merits of SVC such as polytopic representability and ease of manipulating robustness. Besides, using only a fraction of data samples ensures low computational costs. Numerical examples demonstrate the performance improvement of the proposed kNN-SVC uncertainty set over conventional sets without considering contextual information. An industrial case of gasoline blending shows the usefulness of the proposed approach in producing robust decisions against linearization errors in nonlinear blending.
基于支持向量聚类的数据驱动上下文鲁棒优化
支持向量聚类(SVC)是鲁棒优化中构造不确定性集的有效数据驱动方法。然而,它不能适当地处理上下文不确定环境中的各种不确定性。在这项工作中,我们提出了一种新的上下文RO (CRO)方案,其中开发了一个称为kNN-SVC的高效上下文不确定性集来捕获协变量与不确定性之间的相关性。使用k近邻(kNN)选择历史观测的子集,上下文信息可以集成到SVC的不确定性集中,从而在继承SVC的优点(如多向可表示性和易于操作的鲁棒性)的同时减轻保守性。此外,只使用一小部分数据样本可以确保较低的计算成本。数值算例表明,在不考虑上下文信息的情况下,所提出的kNN-SVC不确定性集的性能优于传统的不确定性集。一个汽油混合的工业实例表明,该方法在非线性混合中对线性化误差产生鲁棒决策方面是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信