Identifying novel therapeutic targets in cystic fibrosis through advanced single-cell transcriptomics analysis

IF 7 2区 医学 Q1 BIOLOGY
George Sun , Yi-Hui Zhou
{"title":"Identifying novel therapeutic targets in cystic fibrosis through advanced single-cell transcriptomics analysis","authors":"George Sun ,&nbsp;Yi-Hui Zhou","doi":"10.1016/j.compbiomed.2025.109748","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><div>Lung disease remains a leading cause of morbidity and mortality in individuals with cystic fibrosis (CF). Despite significant advances, the complex molecular mechanisms underlying CF-related airway pathology are not fully understood. Building upon previous single-cell transcriptomics studies in CF patients and healthy controls, this study employs enhanced analytical methodologies to deepen our understanding of CF-associated gene expression.</div></div><div><h3>Methods:</h3><div>We employed advanced single-cell transcriptomics techniques, integrating data from multiple sources and implementing rigorous normalization and mapping strategies using a comprehensive lung reference panel. These sophisticated methods were designed to enhance the accuracy and depth of our analysis, with a focus on elucidating differential gene expression and characterizing co-expression network dynamics associated with cystic fibrosis (CF).</div></div><div><h3>Results:</h3><div>Our analysis uncovered novel genes and regulatory networks that had not been previously associated with CF airway disease. These findings highlight new potential therapeutic targets that could be exploited to develop more effective interventions for managing CF-related lung conditions.</div></div><div><h3>Conclusion:</h3><div>This study provides critical insights into the molecular landscape of CF airway disease, offering new avenues for targeted therapeutic strategies. By identifying key genes and networks involved in CF pathogenesis, our research contributes to the broader efforts to improve the prognosis and quality of life for patients with CF. These discoveries pave the way for future studies aimed at translating these findings into clinical practice.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"187 ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525000988","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background:

Lung disease remains a leading cause of morbidity and mortality in individuals with cystic fibrosis (CF). Despite significant advances, the complex molecular mechanisms underlying CF-related airway pathology are not fully understood. Building upon previous single-cell transcriptomics studies in CF patients and healthy controls, this study employs enhanced analytical methodologies to deepen our understanding of CF-associated gene expression.

Methods:

We employed advanced single-cell transcriptomics techniques, integrating data from multiple sources and implementing rigorous normalization and mapping strategies using a comprehensive lung reference panel. These sophisticated methods were designed to enhance the accuracy and depth of our analysis, with a focus on elucidating differential gene expression and characterizing co-expression network dynamics associated with cystic fibrosis (CF).

Results:

Our analysis uncovered novel genes and regulatory networks that had not been previously associated with CF airway disease. These findings highlight new potential therapeutic targets that could be exploited to develop more effective interventions for managing CF-related lung conditions.

Conclusion:

This study provides critical insights into the molecular landscape of CF airway disease, offering new avenues for targeted therapeutic strategies. By identifying key genes and networks involved in CF pathogenesis, our research contributes to the broader efforts to improve the prognosis and quality of life for patients with CF. These discoveries pave the way for future studies aimed at translating these findings into clinical practice.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信