Analysis of earthquake detection using deep learning: Evaluating reliability and uncertainty in prediction methods

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Sebastián Gamboa-Chacón , Esteban Meneses , Esteban J. Chaves
{"title":"Analysis of earthquake detection using deep learning: Evaluating reliability and uncertainty in prediction methods","authors":"Sebastián Gamboa-Chacón ,&nbsp;Esteban Meneses ,&nbsp;Esteban J. Chaves","doi":"10.1016/j.cageo.2025.105877","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates the performance and reliability of earthquake detection using the EQTransformer, a novel deep learning program that is widely used in seismological observatories and research for enhancing earthquake catalogs. We test the EQTransformer capabilities and uncertainties using seismic data from the Volcanological and Seismological Observatory of Costa Rica and compare two detection options: the simplified method (MseedPredictor) and the complex method (Predictor), the latter incorporating Monte Carlo Dropout, to assess their reproducibility and uncertainty in identifying seismic events. Our analysis focuses on 24 h-duration data that began on February 18, 2023, following a magnitude 5.5 mainshock. Notably, we observed that sequential experiments with identical data and parametrization yield different detections and a varying number of events as a function of time. The results demonstrate that the complex method, which leverages iterative dropout, consistently yields more reproducible and reliable detections than the simplified method, which shows greater variability and is more prone to false positives. This study highlights the critical importance of method selection in deep learning models for seismic event detection, emphasizing the need for rigorous evaluation of detection algorithms to ensure accurate and consistent earthquake catalogs and interpretations. Our findings provide valuable insights for the application of AI tools in seismology, particularly in enhancing the precision and reliability of seismic monitoring efforts.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"197 ","pages":"Article 105877"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300425000275","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the performance and reliability of earthquake detection using the EQTransformer, a novel deep learning program that is widely used in seismological observatories and research for enhancing earthquake catalogs. We test the EQTransformer capabilities and uncertainties using seismic data from the Volcanological and Seismological Observatory of Costa Rica and compare two detection options: the simplified method (MseedPredictor) and the complex method (Predictor), the latter incorporating Monte Carlo Dropout, to assess their reproducibility and uncertainty in identifying seismic events. Our analysis focuses on 24 h-duration data that began on February 18, 2023, following a magnitude 5.5 mainshock. Notably, we observed that sequential experiments with identical data and parametrization yield different detections and a varying number of events as a function of time. The results demonstrate that the complex method, which leverages iterative dropout, consistently yields more reproducible and reliable detections than the simplified method, which shows greater variability and is more prone to false positives. This study highlights the critical importance of method selection in deep learning models for seismic event detection, emphasizing the need for rigorous evaluation of detection algorithms to ensure accurate and consistent earthquake catalogs and interpretations. Our findings provide valuable insights for the application of AI tools in seismology, particularly in enhancing the precision and reliability of seismic monitoring efforts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信