{"title":"Automated floating debris monitoring using optical satellite imagery and artificial intelligence: Recent trends, challenges and opportunities","authors":"Kamakhya Bansal, Ashish Kumar Tripathi","doi":"10.1016/j.rsase.2025.101475","DOIUrl":null,"url":null,"abstract":"<div><div>Unwanted and harmful floating debris creates aesthetic, economic, social, and ecological harm. The optical satellites provide frequent global coverage across multiple spectral bands. Utilizing this abundant multi-banded optical satellite data for floating debris monitoring, many artificial intelligence-based approaches were proposed. These approaches face various challenges due to the multidimensional nature of the earth observation data visualized on a reduced scale. This work identifies various stages of AI deployment for floating debris identification, classification, segmentation, density estimation, and/or temporal study. The challenges during each stage along with some potential solutions applied in this field or elsewhere have been identified. Since AI approaches are data-driven, the limitation of labeled data with real-time diversity of shape, color, texture, size, and composition of floating debris placed against different backgrounds is most acute. The work proposes the utilization of some recent AI-based systems, like continuous learning, transfer learning, attention-based transformers, explainable AI, etc., to resolve these identified challenges. The work calls for further research into the application of pre-trained models, semi-supervised learning, and multi-modal data fusion for overcoming the labeled data deficiency. Additionally, harmful debris density estimation and factors leading to a change in the estimated density need further research.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101475"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235293852500028X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Unwanted and harmful floating debris creates aesthetic, economic, social, and ecological harm. The optical satellites provide frequent global coverage across multiple spectral bands. Utilizing this abundant multi-banded optical satellite data for floating debris monitoring, many artificial intelligence-based approaches were proposed. These approaches face various challenges due to the multidimensional nature of the earth observation data visualized on a reduced scale. This work identifies various stages of AI deployment for floating debris identification, classification, segmentation, density estimation, and/or temporal study. The challenges during each stage along with some potential solutions applied in this field or elsewhere have been identified. Since AI approaches are data-driven, the limitation of labeled data with real-time diversity of shape, color, texture, size, and composition of floating debris placed against different backgrounds is most acute. The work proposes the utilization of some recent AI-based systems, like continuous learning, transfer learning, attention-based transformers, explainable AI, etc., to resolve these identified challenges. The work calls for further research into the application of pre-trained models, semi-supervised learning, and multi-modal data fusion for overcoming the labeled data deficiency. Additionally, harmful debris density estimation and factors leading to a change in the estimated density need further research.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems