Cubic algebras, induced representations and general solution of the exceptional Laguerre equation X1

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Ian Marquette
{"title":"Cubic algebras, induced representations and general solution of the exceptional Laguerre equation X1","authors":"Ian Marquette","doi":"10.1016/j.physd.2025.134547","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the case of exceptional Laguerre polynomials <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> of type I, II and III, their ordinary differential equations and the problem of finding general solutions beside the polynomial part. We will develop an algebraic approach based on the Schrödinger form of the problem and associate representations of the underlying spectrum generating algebra. We use the Darboux–Crum transformation to construct ladder operators of fourth order for the case of the exceptional Laguerre polynomials <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> of type I, II and III. We then obtain all zero modes for the lowering and raising operators. We construct the induced representation for the linearly independent solutions, including the polynomial states. Those states forming the general solution are important not only in the construction of a wider set of physical states satisfying different boundary conditions but also used in the context of getting isospectral deformations as they allow often to overcome obstruction as several Wronskian constructions of Hamiltonian lead to only formal Darboux transformations. Our approach allows to provide a completely algebraic construction of the two linearly independent solutions of the ordinary differential equation of the exceptional orthogonal polynomials of Laguerre type <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> ( case I, II and III). The analogues of the Rodrigues formulas for the general solution are constructed. The set of finite states from which the other states can be obtained algebraically is not unique, but the vanishing arrow and diagonal arrow from the diagram of the 2-chain representations can be used to obtain minimal sets. These Rodrigues formulas are then exploited, not only to construct all the states (polynomial and non-polynomial), in a purely algebraic way, but also to obtain coefficients from the action of the ladder operators also in an algebraic manner. Those results are established by means of higher commutation relations related to the cubic Heisenberg–Weyl algebra. The zero modes are associated with eigenstates, but also generalised eigenstates.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"473 ","pages":"Article 134547"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925000260","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the case of exceptional Laguerre polynomials X1 of type I, II and III, their ordinary differential equations and the problem of finding general solutions beside the polynomial part. We will develop an algebraic approach based on the Schrödinger form of the problem and associate representations of the underlying spectrum generating algebra. We use the Darboux–Crum transformation to construct ladder operators of fourth order for the case of the exceptional Laguerre polynomials X1 of type I, II and III. We then obtain all zero modes for the lowering and raising operators. We construct the induced representation for the linearly independent solutions, including the polynomial states. Those states forming the general solution are important not only in the construction of a wider set of physical states satisfying different boundary conditions but also used in the context of getting isospectral deformations as they allow often to overcome obstruction as several Wronskian constructions of Hamiltonian lead to only formal Darboux transformations. Our approach allows to provide a completely algebraic construction of the two linearly independent solutions of the ordinary differential equation of the exceptional orthogonal polynomials of Laguerre type X1 ( case I, II and III). The analogues of the Rodrigues formulas for the general solution are constructed. The set of finite states from which the other states can be obtained algebraically is not unique, but the vanishing arrow and diagonal arrow from the diagram of the 2-chain representations can be used to obtain minimal sets. These Rodrigues formulas are then exploited, not only to construct all the states (polynomial and non-polynomial), in a purely algebraic way, but also to obtain coefficients from the action of the ladder operators also in an algebraic manner. Those results are established by means of higher commutation relations related to the cubic Heisenberg–Weyl algebra. The zero modes are associated with eigenstates, but also generalised eigenstates.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信