Fast exact algorithms for the SAT problem with bounded occurrences of variables

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Junqiang Peng, Mingyu Xiao
{"title":"Fast exact algorithms for the SAT problem with bounded occurrences of variables","authors":"Junqiang Peng,&nbsp;Mingyu Xiao","doi":"10.1016/j.tcs.2024.115037","DOIUrl":null,"url":null,"abstract":"<div><div>We present fast algorithms for the general CNF satisfiability problem (SAT) with running-time bound <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> is a function of the maximum occurrence <em>d</em> of variables (<em>d</em> can also be the average occurrence when each variable appears at least twice), and <em>n</em> is the number of variables in the input formula. Similar to SAT with bounded clause lengths, SAT with bounded occurrences of variables has also been extensively studied in the literature. Especially, the running-time bounds for small values of <em>d</em>, such as <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><mi>d</mi><mo>=</mo><mn>4</mn></math></span>, have become bottlenecks for algorithms evaluated by the formula length <em>L</em> and other algorithms. In this paper, we show that SAT can be solved in time <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>1.1238</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> for <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>1.2628</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> for <span><math><mi>d</mi><mo>=</mo><mn>4</mn></math></span>, improving the previous results <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>1.1279</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>1.2721</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> obtained by Wahlström (SAT 2005) nearly 20 years ago. For <span><math><mi>d</mi><mo>≥</mo><mn>5</mn></math></span>, we obtain a running time bound of <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>1.0641</mn></mrow><mrow><mi>d</mi><mi>n</mi></mrow></msup><mo>)</mo></math></span>, implying a bound of <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msup><mrow><mn>1.0641</mn></mrow><mrow><mi>L</mi></mrow></msup><mo>)</mo></math></span> with respect to the formula length <em>L</em>.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1029 ","pages":"Article 115037"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524006546","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We present fast algorithms for the general CNF satisfiability problem (SAT) with running-time bound O(cdn), where cd is a function of the maximum occurrence d of variables (d can also be the average occurrence when each variable appears at least twice), and n is the number of variables in the input formula. Similar to SAT with bounded clause lengths, SAT with bounded occurrences of variables has also been extensively studied in the literature. Especially, the running-time bounds for small values of d, such as d=3 and d=4, have become bottlenecks for algorithms evaluated by the formula length L and other algorithms. In this paper, we show that SAT can be solved in time O(1.1238n) for d=3 and O(1.2628n) for d=4, improving the previous results O(1.1279n) and O(1.2721n) obtained by Wahlström (SAT 2005) nearly 20 years ago. For d5, we obtain a running time bound of O(1.0641dn), implying a bound of O(1.0641L) with respect to the formula length L.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信