{"title":"Super spanning connectivity of the generalized hypercube network","authors":"Xiaoqian Wang, Eminjan Sabir","doi":"10.1016/j.tcs.2024.115038","DOIUrl":null,"url":null,"abstract":"<div><div>The generalized hypercube <span><math><mi>G</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> is one of the key interconnection networks with attractive topological properties. In this paper, we focus our attention on the super spanning connectivity of <span><math><mi>G</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>. We show that for a pair of arbitrary nodes <em>x</em> and <em>y</em> in <span><math><mi>G</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mspace></mspace><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≥</mo><mn>3</mn><mo>,</mo><mspace></mspace><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, there is a set of <span><math><mi>s</mi><mspace></mspace><mo>(</mo><mn>1</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>κ</mi><mo>(</mo><mi>G</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>)</mo><mo>)</mo></math></span> internally node-disjoint <span><math><mi>x</mi><mo>,</mo><mi>y</mi></math></span>-paths whose union covers every vertex in <span><math><mi>G</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><mi>κ</mi><mo>(</mo><mi>G</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> denotes the connectivity of <span><math><mi>G</mi><mo>(</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>. Our results, in some sense, extended a previous result in Shih and Kao (2011) <span><span>[23]</span></span>.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1029 ","pages":"Article 115038"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524006558","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The generalized hypercube is one of the key interconnection networks with attractive topological properties. In this paper, we focus our attention on the super spanning connectivity of . We show that for a pair of arbitrary nodes x and y in , there is a set of internally node-disjoint -paths whose union covers every vertex in , where denotes the connectivity of . Our results, in some sense, extended a previous result in Shih and Kao (2011) [23].
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.