{"title":"Highly irregular graph decompositions","authors":"Julien Bensmail , Malory Marin , Leandro Montero , Alexandre Talon","doi":"10.1016/j.tcs.2024.115036","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce and study decompositions of graphs into so-called highly irregular graphs, as first introduced by Alavi, Chartrand, Chung, Erdős, Graham and Oellermann in the 1980s. That is, given any graph, we are interested in colouring its edges with the least number of colours possible, so that, in each colour, no vertex has two neighbours with the same degree in that colour. We provide results of different natures on this problem. We first establish connections with other notions of graph theory, including other decomposition problems, from which we notably get first bounds on the associated chromatic parameter of interest. We then study this parameter for several common classes of graphs, including graphs of bounded degree, complete bipartite graphs and complete graphs, for which we establish (sometimes close to) tight results. We also provide negative and positive algorithmic results, showing that the problem of determining our new chromatic parameter is <span>NP</span>-complete in general, but polynomial-time tractable in particular contexts. We conclude with questions and problems for further work on the topic.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1029 ","pages":"Article 115036"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524006534","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce and study decompositions of graphs into so-called highly irregular graphs, as first introduced by Alavi, Chartrand, Chung, Erdős, Graham and Oellermann in the 1980s. That is, given any graph, we are interested in colouring its edges with the least number of colours possible, so that, in each colour, no vertex has two neighbours with the same degree in that colour. We provide results of different natures on this problem. We first establish connections with other notions of graph theory, including other decomposition problems, from which we notably get first bounds on the associated chromatic parameter of interest. We then study this parameter for several common classes of graphs, including graphs of bounded degree, complete bipartite graphs and complete graphs, for which we establish (sometimes close to) tight results. We also provide negative and positive algorithmic results, showing that the problem of determining our new chromatic parameter is NP-complete in general, but polynomial-time tractable in particular contexts. We conclude with questions and problems for further work on the topic.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.