Approximation algorithms for cycle and path partitions in complete graphs

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Jingyang Zhao, Mingyu Xiao
{"title":"Approximation algorithms for cycle and path partitions in complete graphs","authors":"Jingyang Zhao,&nbsp;Mingyu Xiao","doi":"10.1016/j.tcs.2024.115049","DOIUrl":null,"url":null,"abstract":"<div><div>Given an edge-weighted (metric/general) complete graph with <em>n</em> vertices, where <span><math><mi>n</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>k</mi><mo>=</mo><mn>0</mn></math></span>, the maximum weight (metric/general) <em>k</em>-cycle/path partition problem is to find a set of <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></mfrac></math></span> vertex-disjoint <em>k</em>-cycles/paths such that the total weight is maximized. In this paper, we consider approximation algorithms. For metric <em>k</em>-cycle partition, we improve the previous approximation ratio from <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span> to <span><math><mfrac><mrow><mn>7</mn></mrow><mrow><mn>10</mn></mrow></mfrac></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>5</mn></math></span>, and from <span><math><mfrac><mrow><mn>7</mn></mrow><mrow><mn>8</mn></mrow></mfrac><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mi>k</mi><mo>&gt;</mo><mn>5</mn></math></span> to <span><math><mo>(</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>8</mn><mi>k</mi></mrow></mfrac><mo>)</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac><mo>)</mo></math></span> for constant odd <span><math><mi>k</mi><mo>&gt;</mo><mn>5</mn></math></span> and to <span><math><mfrac><mrow><mn>7</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>)</mo></math></span> for even <span><math><mi>k</mi><mo>&gt;</mo><mn>5</mn></math></span>. For metric <em>k</em>-path partition, we improve the approximation ratio from <span><math><mfrac><mrow><mn>7</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac><mo>)</mo></math></span> to <span><math><mfrac><mrow><mn>27</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>48</mn><mi>k</mi><mo>+</mo><mn>16</mn></mrow><mrow><mn>32</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>36</mn><mi>k</mi><mo>−</mo><mn>24</mn></mrow></mfrac></math></span> for <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>6</mn><mo>,</mo><mn>8</mn><mo>,</mo><mn>10</mn><mo>}</mo></math></span>. For the case of <span><math><mi>k</mi><mo>=</mo><mn>4</mn></math></span>, we improve the approximation ratio from <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span> to <span><math><mfrac><mrow><mn>5</mn></mrow><mrow><mn>6</mn></mrow></mfrac></math></span> for metric 4-cycle partition, from <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> to <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span> for general 4-cycle partition, and from <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span> to <span><math><mfrac><mrow><mn>14</mn></mrow><mrow><mn>17</mn></mrow></mfrac></math></span> for metric 4-path partition.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1029 ","pages":"Article 115049"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524006662","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Given an edge-weighted (metric/general) complete graph with n vertices, where nmodk=0, the maximum weight (metric/general) k-cycle/path partition problem is to find a set of nk vertex-disjoint k-cycles/paths such that the total weight is maximized. In this paper, we consider approximation algorithms. For metric k-cycle partition, we improve the previous approximation ratio from 35 to 710 for k=5, and from 78(11k)2 for k>5 to (7818k)(11k) for constant odd k>5 and to 78(11k+1k(k1)) for even k>5. For metric k-path partition, we improve the approximation ratio from 78(11k) to 27k248k+1632k236k24 for k{6,8,10}. For the case of k=4, we improve the approximation ratio from 34 to 56 for metric 4-cycle partition, from 23 to 34 for general 4-cycle partition, and from 34 to 1417 for metric 4-path partition.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信