{"title":"Approximation algorithms for cycle and path partitions in complete graphs","authors":"Jingyang Zhao, Mingyu Xiao","doi":"10.1016/j.tcs.2024.115049","DOIUrl":null,"url":null,"abstract":"<div><div>Given an edge-weighted (metric/general) complete graph with <em>n</em> vertices, where <span><math><mi>n</mi><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>k</mi><mo>=</mo><mn>0</mn></math></span>, the maximum weight (metric/general) <em>k</em>-cycle/path partition problem is to find a set of <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></mfrac></math></span> vertex-disjoint <em>k</em>-cycles/paths such that the total weight is maximized. In this paper, we consider approximation algorithms. For metric <em>k</em>-cycle partition, we improve the previous approximation ratio from <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span> to <span><math><mfrac><mrow><mn>7</mn></mrow><mrow><mn>10</mn></mrow></mfrac></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>5</mn></math></span>, and from <span><math><mfrac><mrow><mn>7</mn></mrow><mrow><mn>8</mn></mrow></mfrac><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mi>k</mi><mo>></mo><mn>5</mn></math></span> to <span><math><mo>(</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>8</mn><mi>k</mi></mrow></mfrac><mo>)</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac><mo>)</mo></math></span> for constant odd <span><math><mi>k</mi><mo>></mo><mn>5</mn></math></span> and to <span><math><mfrac><mrow><mn>7</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mfrac><mo>)</mo></math></span> for even <span><math><mi>k</mi><mo>></mo><mn>5</mn></math></span>. For metric <em>k</em>-path partition, we improve the approximation ratio from <span><math><mfrac><mrow><mn>7</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac><mo>)</mo></math></span> to <span><math><mfrac><mrow><mn>27</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>48</mn><mi>k</mi><mo>+</mo><mn>16</mn></mrow><mrow><mn>32</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>36</mn><mi>k</mi><mo>−</mo><mn>24</mn></mrow></mfrac></math></span> for <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>6</mn><mo>,</mo><mn>8</mn><mo>,</mo><mn>10</mn><mo>}</mo></math></span>. For the case of <span><math><mi>k</mi><mo>=</mo><mn>4</mn></math></span>, we improve the approximation ratio from <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span> to <span><math><mfrac><mrow><mn>5</mn></mrow><mrow><mn>6</mn></mrow></mfrac></math></span> for metric 4-cycle partition, from <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> to <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span> for general 4-cycle partition, and from <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span> to <span><math><mfrac><mrow><mn>14</mn></mrow><mrow><mn>17</mn></mrow></mfrac></math></span> for metric 4-path partition.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1029 ","pages":"Article 115049"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524006662","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Given an edge-weighted (metric/general) complete graph with n vertices, where , the maximum weight (metric/general) k-cycle/path partition problem is to find a set of vertex-disjoint k-cycles/paths such that the total weight is maximized. In this paper, we consider approximation algorithms. For metric k-cycle partition, we improve the previous approximation ratio from to for , and from for to for constant odd and to for even . For metric k-path partition, we improve the approximation ratio from to for . For the case of , we improve the approximation ratio from to for metric 4-cycle partition, from to for general 4-cycle partition, and from to for metric 4-path partition.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.