{"title":"Extensional concepts in intensional type theory, revisited","authors":"Krzysztof Kapulkin, Yufeng Li","doi":"10.1016/j.tcs.2024.115051","DOIUrl":null,"url":null,"abstract":"<div><div>Revisiting a classic result from M. Hofmann's dissertation, we give a direct proof of Morita equivalence, in the sense of V. Isaev, between extensional type theory and intensional type theory extended by the principles of functional extensionality and of uniqueness of identity proofs.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1029 ","pages":"Article 115051"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524006686","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Revisiting a classic result from M. Hofmann's dissertation, we give a direct proof of Morita equivalence, in the sense of V. Isaev, between extensional type theory and intensional type theory extended by the principles of functional extensionality and of uniqueness of identity proofs.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.