Shengjiang Kong , Weiwei Wang , Yu Han , Xiangchu Feng
{"title":"Noise variances and regularization learning gradient descent network for image deconvolution","authors":"Shengjiang Kong , Weiwei Wang , Yu Han , Xiangchu Feng","doi":"10.1016/j.jvcir.2025.104391","DOIUrl":null,"url":null,"abstract":"<div><div>Existing image deblurring approaches usually assume uniform Additive White Gaussian Noise (AWGN). However, the noise in real-world images is generally non-uniform AWGN and exhibits variations across different images. This work presents a deep learning framework for image deblurring that addresses non-uniform AWGN. We introduce a novel data fitting term within a regularization framework to better handle noise variations. Using gradient descent algorithm, we learn the inverse covariance of the non-uniform AWGN, the gradient of the regularization term, and the gradient adjusting factor from data. To achieve this, we unroll the gradient descent iteration into an end-to-end trainable network, where, these components are parameterized by convolutional neural networks. The proposed model is called the noise variances and regularization learning gradient descent network (NRL-GDN). Its major advantage is that it can automatically deal with both uniform and non-uniform AWGN. Experimental results on synthetic and real-world images demonstrate its superiority over existing baselines.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"107 ","pages":"Article 104391"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000057","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Existing image deblurring approaches usually assume uniform Additive White Gaussian Noise (AWGN). However, the noise in real-world images is generally non-uniform AWGN and exhibits variations across different images. This work presents a deep learning framework for image deblurring that addresses non-uniform AWGN. We introduce a novel data fitting term within a regularization framework to better handle noise variations. Using gradient descent algorithm, we learn the inverse covariance of the non-uniform AWGN, the gradient of the regularization term, and the gradient adjusting factor from data. To achieve this, we unroll the gradient descent iteration into an end-to-end trainable network, where, these components are parameterized by convolutional neural networks. The proposed model is called the noise variances and regularization learning gradient descent network (NRL-GDN). Its major advantage is that it can automatically deal with both uniform and non-uniform AWGN. Experimental results on synthetic and real-world images demonstrate its superiority over existing baselines.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.