{"title":"Depth completion based on multi-scale spatial propagation and tensor decomposition","authors":"Mingming Sun, Tao Li, Qing Liao, Minghui Zhou","doi":"10.1016/j.jvcir.2025.104394","DOIUrl":null,"url":null,"abstract":"<div><div>Depth completion aims to generate dense depth maps from sparse depth maps. Existing approaches typically apply a spatial propagation module to iteratively refine depth values based on a single-scale initial depth map. In contrast, to overcome the limitations imposed by the convolution kernel size on propagation range, we propose a multi-scale spatial propagation module (MSSPM) that utilizes multi-scale features from the decoder to guide spatial propagation. To further enhance the model’s performance, we introduce a bottleneck feature enhancement module (BFEM) based on tensor decomposition, which can reduce feature redundancy and perform denoising through low-rank feature factorization. We also introduce a cross-layer feature fusion module (Fusion) to efficiently combine low-level encoder features and high-level decoder features. Extensive experiments on the indoor NYUv2 dataset and the outdoor KITTI dataset demonstrate the effectiveness of the proposed method.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"107 ","pages":"Article 104394"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000082","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Depth completion aims to generate dense depth maps from sparse depth maps. Existing approaches typically apply a spatial propagation module to iteratively refine depth values based on a single-scale initial depth map. In contrast, to overcome the limitations imposed by the convolution kernel size on propagation range, we propose a multi-scale spatial propagation module (MSSPM) that utilizes multi-scale features from the decoder to guide spatial propagation. To further enhance the model’s performance, we introduce a bottleneck feature enhancement module (BFEM) based on tensor decomposition, which can reduce feature redundancy and perform denoising through low-rank feature factorization. We also introduce a cross-layer feature fusion module (Fusion) to efficiently combine low-level encoder features and high-level decoder features. Extensive experiments on the indoor NYUv2 dataset and the outdoor KITTI dataset demonstrate the effectiveness of the proposed method.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.