Adaptive signal control at partially connected intersections: A stochastic optimization model for uncertain vehicle arrival rates

IF 5.8 1区 工程技术 Q1 ECONOMICS
Shaocheng JIA , S.C. WONG , Wai WONG
{"title":"Adaptive signal control at partially connected intersections: A stochastic optimization model for uncertain vehicle arrival rates","authors":"Shaocheng JIA ,&nbsp;S.C. WONG ,&nbsp;Wai WONG","doi":"10.1016/j.trb.2025.103161","DOIUrl":null,"url":null,"abstract":"<div><div>Optimizing traffic signal control is crucial for improving efficiency in congested urban environments. Current adaptive signal control systems predominantly rely on on-road detectors, which entail significant capital and maintenance costs, thereby hindering widespread implementation. In this paper, a novel connected vehicle (CV)-based adaptive signal control (CVASC) framework is proposed that optimizes signal plans on a cycle-by-cycle basis without the need for on-road detectors, leveraging partial CV data. The framework comprises a consequential system delay (CSD) model, deterministic penetration rate control (DPRC), and stochastic penetration rate control (SPRC). The CSD model analytically estimates vehicle arrival rates and, consequently, the total junction delay, utilizing CV penetration rates as essential inputs. Employing the CSD model without considering CV penetration rate uncertainty results in fixed vehicle arrival rates and leads to DPRC. On the other hand, incorporating CV penetration rate uncertainty accounts for uncertain vehicle arrival rates, establishing SPRC, which poses a high-dimensional, non-convex, and stochastic optimization problem. An analytical stochastic delay model using generalized polynomial chaos expansion is proposed to efficiently and accurately estimate the mean, variance, and their gradients for the CSD model within SPRC. To solve DPRC and SPRC, a gradient-guided golden section search algorithm is introduced. Comprehensive numerical experiments and VISSIM simulations demonstrate the effectiveness of the CVASC framework, emphasizing the importance of accounting for CV penetration rate uncertainty and uncertain vehicle arrival rates in achieving optimal solutions for adaptive signal optimizations.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"193 ","pages":"Article 103161"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261525000104","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing traffic signal control is crucial for improving efficiency in congested urban environments. Current adaptive signal control systems predominantly rely on on-road detectors, which entail significant capital and maintenance costs, thereby hindering widespread implementation. In this paper, a novel connected vehicle (CV)-based adaptive signal control (CVASC) framework is proposed that optimizes signal plans on a cycle-by-cycle basis without the need for on-road detectors, leveraging partial CV data. The framework comprises a consequential system delay (CSD) model, deterministic penetration rate control (DPRC), and stochastic penetration rate control (SPRC). The CSD model analytically estimates vehicle arrival rates and, consequently, the total junction delay, utilizing CV penetration rates as essential inputs. Employing the CSD model without considering CV penetration rate uncertainty results in fixed vehicle arrival rates and leads to DPRC. On the other hand, incorporating CV penetration rate uncertainty accounts for uncertain vehicle arrival rates, establishing SPRC, which poses a high-dimensional, non-convex, and stochastic optimization problem. An analytical stochastic delay model using generalized polynomial chaos expansion is proposed to efficiently and accurately estimate the mean, variance, and their gradients for the CSD model within SPRC. To solve DPRC and SPRC, a gradient-guided golden section search algorithm is introduced. Comprehensive numerical experiments and VISSIM simulations demonstrate the effectiveness of the CVASC framework, emphasizing the importance of accounting for CV penetration rate uncertainty and uncertain vehicle arrival rates in achieving optimal solutions for adaptive signal optimizations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Research Part B-Methodological
Transportation Research Part B-Methodological 工程技术-工程:土木
CiteScore
12.40
自引率
8.80%
发文量
143
审稿时长
14.1 weeks
期刊介绍: Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信