Uchechukwu Awada , Jiankang Zhang , Sheng Chen , Shuangzhi Li , Shouyi Yang
{"title":"Collaborative learning-based inter-dependent task dispatching and co-location in an integrated edge computing system","authors":"Uchechukwu Awada , Jiankang Zhang , Sheng Chen , Shuangzhi Li , Shouyi Yang","doi":"10.1016/j.dcan.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, several edge deployment types, such as on-premise edge clusters, Unmanned Aerial Vehicles (UAV)-attached edge devices, telecommunication base stations installed with edge clusters, etc., are being deployed to enable faster response time for latency-sensitive tasks. One fundamental problem is where and how to offload and schedule multi-dependent tasks so as to minimize their collective execution time and to achieve high resource utilization. Existing approaches randomly dispatch tasks naively to available edge nodes without considering the resource demands of tasks, inter-dependencies of tasks and edge resource availability. These approaches can result in the longer waiting time for tasks due to insufficient resource availability or dependency support, as well as provider lock-in. Therefore, we present <em>EdgeColla</em>, which is based on the integration of edge resources running across multi-edge deployments. <em>EdgeColla</em> leverages <em>learning</em> techniques to intelligently <em>dispatch</em> multi-dependent tasks, and a variant bin-packing optimization method to <em>co-locate</em> these tasks firmly on available nodes to optimally utilize them. Extensive experiments on real-world datasets from Alibaba on task dependencies show that our approach can achieve optimal performance than the baseline schemes.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 6","pages":"Pages 1837-1850"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000956","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, several edge deployment types, such as on-premise edge clusters, Unmanned Aerial Vehicles (UAV)-attached edge devices, telecommunication base stations installed with edge clusters, etc., are being deployed to enable faster response time for latency-sensitive tasks. One fundamental problem is where and how to offload and schedule multi-dependent tasks so as to minimize their collective execution time and to achieve high resource utilization. Existing approaches randomly dispatch tasks naively to available edge nodes without considering the resource demands of tasks, inter-dependencies of tasks and edge resource availability. These approaches can result in the longer waiting time for tasks due to insufficient resource availability or dependency support, as well as provider lock-in. Therefore, we present EdgeColla, which is based on the integration of edge resources running across multi-edge deployments. EdgeColla leverages learning techniques to intelligently dispatch multi-dependent tasks, and a variant bin-packing optimization method to co-locate these tasks firmly on available nodes to optimally utilize them. Extensive experiments on real-world datasets from Alibaba on task dependencies show that our approach can achieve optimal performance than the baseline schemes.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.