Scattering of spherical P-waves by three-dimensional cavity in an elastic half-space

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Songlin Hu , Jianwen Liang , Zhenning Ba , Zhongxian Liu
{"title":"Scattering of spherical P-waves by three-dimensional cavity in an elastic half-space","authors":"Songlin Hu ,&nbsp;Jianwen Liang ,&nbsp;Zhenning Ba ,&nbsp;Zhongxian Liu","doi":"10.1016/j.enganabound.2025.106137","DOIUrl":null,"url":null,"abstract":"<div><div>This study adopts the indirect boundary integral equation method (IBIEM) to solve the scattering of spherical P-waves by a three-dimensional (3D) cavity in an elastic half-space. Specifically, the free field of the spherical wave is obtained by the method of full space superposition. Based on the single-layer potential theory, the scattered field is constructed using concentrated force sources applied on the fictitious wave source surface. Our method’s numerical accuracy and stability are verified by comparing it against existing results. Additionally, considering a spherical cavity in a half-space as an example, this study investigates the influence of the wave source orientation, incident wave frequency, distance between the wave source and the cavity, and cavity depth on the surface displacement and dynamic stress concentration factor (DSCF) on the cavity surface. The results indicate significant differences in the spatial distribution characteristics of surface displacement and DSCF on the cavity surface for different wave source orientations and cavity depths. As the incident frequency increases, the spatial oscillation of surface displacement near the cavity intensifies, and the DSCF gradually decreases. As the wave source approaches the cavity, the amplification effect of surface displacement near the cavity becomes more apparent. At the same time, the maximum DSCF shows significant non-monotonic variation, and its position also changes accordingly. When the distance between the wave source and the cavity is large, the spherical wave can be approximated as a plane wave.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"173 ","pages":"Article 106137"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799725000256","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study adopts the indirect boundary integral equation method (IBIEM) to solve the scattering of spherical P-waves by a three-dimensional (3D) cavity in an elastic half-space. Specifically, the free field of the spherical wave is obtained by the method of full space superposition. Based on the single-layer potential theory, the scattered field is constructed using concentrated force sources applied on the fictitious wave source surface. Our method’s numerical accuracy and stability are verified by comparing it against existing results. Additionally, considering a spherical cavity in a half-space as an example, this study investigates the influence of the wave source orientation, incident wave frequency, distance between the wave source and the cavity, and cavity depth on the surface displacement and dynamic stress concentration factor (DSCF) on the cavity surface. The results indicate significant differences in the spatial distribution characteristics of surface displacement and DSCF on the cavity surface for different wave source orientations and cavity depths. As the incident frequency increases, the spatial oscillation of surface displacement near the cavity intensifies, and the DSCF gradually decreases. As the wave source approaches the cavity, the amplification effect of surface displacement near the cavity becomes more apparent. At the same time, the maximum DSCF shows significant non-monotonic variation, and its position also changes accordingly. When the distance between the wave source and the cavity is large, the spherical wave can be approximated as a plane wave.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信