Sufang Liu , Zhaoman Huang , Yueke Lv , Chia-Wei Lee
{"title":"Evaluating the reliability of complete Josephus cubes under extra link fault with the optimal solution of the edge isoperimetric problem","authors":"Sufang Liu , Zhaoman Huang , Yueke Lv , Chia-Wei Lee","doi":"10.1016/j.tcs.2025.115064","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>h</em>-extra edge-connectivity of a connected graph <em>G</em> <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, as a generalization of the classic Menger's Theorem, is the minimum number of edges that need to be removed to disconnect graph <em>G</em> and ensure that each component of the remaining graph has at least <em>h</em> vertices. This paper focuses on the reliability of the <em>h</em>-extra edge-connectivity of the complete Josephus cube <span><math><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> interconnection network, a variant of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, as the underlying topology, denoted as <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>(</mo><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>. By analyzing the properties of the optimal solution of the edge isoperimetric problem on <span><math><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the exact value and the <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>-optimality of the <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>(</mo><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>1</mn></mrow></msup></math></span> is characterized. For a sufficiently large positive integer <em>n</em>, about 44.44% of positive integers <em>h</em> in the well-defined interval <span><math><mn>1</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, the corresponding <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>(</mo><mi>C</mi><mi>J</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> occurs a concentration phenomenon.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1030 ","pages":"Article 115064"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525000027","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The h-extra edge-connectivity of a connected graph G , as a generalization of the classic Menger's Theorem, is the minimum number of edges that need to be removed to disconnect graph G and ensure that each component of the remaining graph has at least h vertices. This paper focuses on the reliability of the h-extra edge-connectivity of the complete Josephus cube interconnection network, a variant of , as the underlying topology, denoted as . By analyzing the properties of the optimal solution of the edge isoperimetric problem on , the exact value and the -optimality of the for is characterized. For a sufficiently large positive integer n, about 44.44% of positive integers h in the well-defined interval , the corresponding occurs a concentration phenomenon.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.