Oracle separations for non-adaptive collapse-free quantum computing

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Henrique Hepp , Murilo V.G. da Silva , Leandro M. Zatesko
{"title":"Oracle separations for non-adaptive collapse-free quantum computing","authors":"Henrique Hepp ,&nbsp;Murilo V.G. da Silva ,&nbsp;Leandro M. Zatesko","doi":"10.1016/j.tcs.2025.115078","DOIUrl":null,"url":null,"abstract":"<div><div>Aaronson et al. (2016) introduced the quantum complexity class <span><math><mi>naCQP</mi></math></span> (<em>non-adaptive Collapse-free Quantum Polynomial time</em>), also known as <span><math><mi>PDQP</mi></math></span> (<em>Product Dynamical Quantum Polynomial time</em>), aiming to define a class larger than <span><math><mi>BQP</mi></math></span> (<em>Bounded-error Quantum Polynomial time</em>), but not large enough to include <span><math><mi>NP</mi></math></span>-complete problems. Aaronson et al. showed that <span><math><mi>SZK</mi></math></span> (<em>Statistical Zero Knowledge</em>) is contained in <span><math><mi>naCQP</mi></math></span> and that there is an oracle <em>A</em> for which <span><math><msup><mrow><mi>NP</mi></mrow><mrow><mi>A</mi></mrow></msup><mo>⊈</mo><msup><mrow><mi>naCQP</mi></mrow><mrow><mi>A</mi></mrow></msup></math></span>. We prove that: there is an oracle <em>A</em> for which <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>A</mi></mrow></msup><mo>=</mo><msup><mrow><mi>BQP</mi></mrow><mrow><mi>A</mi></mrow></msup><mo>=</mo><msup><mrow><mi>SZK</mi></mrow><mrow><mi>A</mi></mrow></msup><mo>=</mo><msup><mrow><mi>naCQP</mi></mrow><mrow><mi>A</mi></mrow></msup><mo>≠</mo><msup><mrow><mo>(</mo><mi>UP</mi><mo>∩</mo><mi>coUP</mi><mo>)</mo></mrow><mrow><mi>A</mi></mrow></msup><mo>=</mo><msup><mrow><mi>EXP</mi></mrow><mrow><mi>A</mi></mrow></msup></math></span>, where <span><math><mi>UP</mi></math></span> (<em>Unambiguous Polynomial time</em>) is an important subclass of <span><math><mi>NP</mi></math></span>; relative to an oracle <em>A</em> chosen uniformly at random, it holds <span><math><msup><mrow><mo>(</mo><mi>UP</mi><mo>∩</mo><mi>coUP</mi><mo>)</mo></mrow><mrow><mi>A</mi></mrow></msup><mo>⊈</mo><msup><mrow><mi>naCQP</mi></mrow><mrow><mi>A</mi></mrow></msup></math></span> with probability 1. Our results are a strengthening of the results by Bennett et al. (1997), Fortnow and Rogers (1999), Tamon and Yamakami (2001), and Aaronson et al. (2016).</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1030 ","pages":"Article 115078"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525000167","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Aaronson et al. (2016) introduced the quantum complexity class naCQP (non-adaptive Collapse-free Quantum Polynomial time), also known as PDQP (Product Dynamical Quantum Polynomial time), aiming to define a class larger than BQP (Bounded-error Quantum Polynomial time), but not large enough to include NP-complete problems. Aaronson et al. showed that SZK (Statistical Zero Knowledge) is contained in naCQP and that there is an oracle A for which NPAnaCQPA. We prove that: there is an oracle A for which PA=BQPA=SZKA=naCQPA(UPcoUP)A=EXPA, where UP (Unambiguous Polynomial time) is an important subclass of NP; relative to an oracle A chosen uniformly at random, it holds (UPcoUP)AnaCQPA with probability 1. Our results are a strengthening of the results by Bennett et al. (1997), Fortnow and Rogers (1999), Tamon and Yamakami (2001), and Aaronson et al. (2016).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信