Characterizing paratransit travel time variability and the causes of day-to-day variation

George Ukam , Charles Adams , Atinuke Adebanji , Williams Ackaah
{"title":"Characterizing paratransit travel time variability and the causes of day-to-day variation","authors":"George Ukam ,&nbsp;Charles Adams ,&nbsp;Atinuke Adebanji ,&nbsp;Williams Ackaah","doi":"10.1016/j.aftran.2024.100003","DOIUrl":null,"url":null,"abstract":"<div><div>The study analyzes paratransit travel time<span> variability and investigates the effects of determining factors. Data collection was done through a travel time survey onboard paratransit vehicles on a chosen route in Kumasi. Key statistical metrics were used to describe the travel time distribution (TTD) in varying departure time windows, and various distributions were fitted to describe travel time variability. The backward stepwise regression analysis approach was used to determine the predictive variables of daily variation in travel times. The TTD did not change by narrowing the departure window in the study route's outbound direction, where a typical paratransit station is operational. The Generalized Extreme Value and Burr<span> distributions were the best fit for the dataset. Dwell time, segment length, signal delay, and the recurrent congestion index on a given segment contributed to the daily variation in paratransit travel times.</span></span></div></div>","PeriodicalId":100058,"journal":{"name":"African Transport Studies","volume":"1 ","pages":"Article 100003"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Transport Studies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950196224000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study analyzes paratransit travel time variability and investigates the effects of determining factors. Data collection was done through a travel time survey onboard paratransit vehicles on a chosen route in Kumasi. Key statistical metrics were used to describe the travel time distribution (TTD) in varying departure time windows, and various distributions were fitted to describe travel time variability. The backward stepwise regression analysis approach was used to determine the predictive variables of daily variation in travel times. The TTD did not change by narrowing the departure window in the study route's outbound direction, where a typical paratransit station is operational. The Generalized Extreme Value and Burr distributions were the best fit for the dataset. Dwell time, segment length, signal delay, and the recurrent congestion index on a given segment contributed to the daily variation in paratransit travel times.
表征公交运行时间的变化和日常变化的原因
本研究分析了辅助交通出行时间的变异性,并探讨了决定因素的影响。数据收集是通过在库马西选定的路线上乘坐辅助运输车辆进行旅行时间调查来完成的。利用关键统计指标来描述不同出发时间窗下的旅行时间分布,并拟合各种分布来描述旅行时间的变异性。采用后向逐步回归分析方法确定出行时间日变化的预测变量。在研究路线的出站方向上,一个典型的辅助交通站正在运行,而缩短出站窗口并没有改变TTD。广义极值分布和Burr分布最适合该数据集。停留时间、路段长度、信号延迟和给定路段上的经常性拥堵指数影响了辅助交通出行时间的每日变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信