Diagonal of pseudoinverse of graph Laplacian: Fast estimation and exact results

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Zenan Lu , Wanyue Xu , Zhongzhi Zhang
{"title":"Diagonal of pseudoinverse of graph Laplacian: Fast estimation and exact results","authors":"Zenan Lu ,&nbsp;Wanyue Xu ,&nbsp;Zhongzhi Zhang","doi":"10.1016/j.tcs.2025.115102","DOIUrl":null,"url":null,"abstract":"<div><div>The diagonal entries of the pseudoinverse of the Laplacian matrix of a graph appear in many important practical applications since they contain much information about the graph, and many relevant quantities can be expressed in terms of them, such as the Kirchhoff index and current flow centrality. However, a naïve approach for computing the diagonal of a matrix inverse has cubic computational complexity in terms of the matrix dimension, which is not acceptable for large graphs with millions of nodes. Thus, rigorous solutions to the diagonal of the Laplacian matrices for general graphs, even for particular graphs are much less. In this paper, we propose a theoretically guaranteed estimation algorithm, which approximates all diagonal entries of the pseudoinverse of a graph Laplacian in nearly linear time with respect to the number of edges in the graph. We execute extensive experiments on real-life networks, which indicate that our algorithm is both efficient and accurate. Also, we determine exact expressions for the diagonal elements of pseudoinverse of the Laplacian matrices for Koch networks and uniform recursive trees, and compare them with those obtained by our approximation algorithm. Finally, we use our algorithm to evaluate the Kirchhoff index of three deterministic model networks, for which the Kirchhoff index can be rigorously determined. These results further show the effectiveness and efficiency of our algorithm.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1032 ","pages":"Article 115102"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525000404","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The diagonal entries of the pseudoinverse of the Laplacian matrix of a graph appear in many important practical applications since they contain much information about the graph, and many relevant quantities can be expressed in terms of them, such as the Kirchhoff index and current flow centrality. However, a naïve approach for computing the diagonal of a matrix inverse has cubic computational complexity in terms of the matrix dimension, which is not acceptable for large graphs with millions of nodes. Thus, rigorous solutions to the diagonal of the Laplacian matrices for general graphs, even for particular graphs are much less. In this paper, we propose a theoretically guaranteed estimation algorithm, which approximates all diagonal entries of the pseudoinverse of a graph Laplacian in nearly linear time with respect to the number of edges in the graph. We execute extensive experiments on real-life networks, which indicate that our algorithm is both efficient and accurate. Also, we determine exact expressions for the diagonal elements of pseudoinverse of the Laplacian matrices for Koch networks and uniform recursive trees, and compare them with those obtained by our approximation algorithm. Finally, we use our algorithm to evaluate the Kirchhoff index of three deterministic model networks, for which the Kirchhoff index can be rigorously determined. These results further show the effectiveness and efficiency of our algorithm.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信