Linear Programming complementation

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Maximilien Gadouleau , George B. Mertzios , Viktor Zamaraev
{"title":"Linear Programming complementation","authors":"Maximilien Gadouleau ,&nbsp;George B. Mertzios ,&nbsp;Viktor Zamaraev","doi":"10.1016/j.tcs.2025.115087","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we introduce a new operation for Linear Programming (LP), called <em>LP complementation</em>, which resembles many properties of LP duality. Given a maximisation (resp. minimisation) LP <em>P</em>, we define its <em>complement Q</em> as a specific minimisation (resp. maximisation) LP which has the <em>same</em> objective function as <em>P</em>. Our central result is the LP complementation theorem, that relates the optimal value <figure><img></figure> of <em>P</em> and the optimal value <figure><img></figure> of its complement by <figure><img></figure>. The LP complementation operation can be applied if and only if <em>P</em> has an optimum value greater than 1.</div><div>To illustrate this, we first apply LP complementation to <em>hypergraphs</em>. For any hypergraph <em>H</em>, we review the four classical LPs, namely <em>covering</em> <span><math><mi>K</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>, <em>packing</em> <span><math><mi>P</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>, <em>matching</em> <span><math><mi>M</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>, and <em>transversal</em> <span><math><mi>T</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>. For every hypergraph <span><math><mi>H</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>, we call <figure><img></figure> the <em>complement</em> of <em>H</em>. For each of the above four LPs, we relate the optimal values of the LP for the dual hypergraph <figure><img></figure> to that of the complement hypergraph <figure><img></figure> (e.g. <figure><img></figure>).</div><div>We then apply LP complementation to <em>fractional graph theory</em>. We prove that the LP for the <em>fractional in-dominating number</em> of a digraph <em>D</em> is the complement of the LP for the <em>fractional total out-dominating number</em> of the digraph complement <figure><img></figure> of <em>D</em>. Furthermore we apply the hypergraph complementation theorem to matroids. We establish that the fractional matching number of a matroid coincide with its edge toughness.</div><div>As our last application of LP complementation, we introduce the natural problem <span>Vertex Cover with Budget (VCB)</span>: for a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> and a positive integer <em>b</em>, what is the maximum number <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> of vertex covers <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>t</mi></mrow><mrow><mi>b</mi></mrow></msub></mrow></msub></math></span> of <em>G</em>, such that every vertex <span><math><mi>v</mi><mo>∈</mo><mi>V</mi></math></span> appears in at most <em>b</em> vertex covers? The integer <em>b</em> can be viewed as a “budget” that we can spend on each vertex and, given this budget, we aim to cover all edges for as long as possible. We relate <span>VCB</span> with the LP <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> for the fractional chromatic number <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> of a graph <em>G</em>. More specifically, we prove that, as <span><math><mi>b</mi><mo>→</mo><mo>∞</mo></math></span>, the optimum for <span>VCB</span> satisfies <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>∼</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>⋅</mo><mi>b</mi></math></span>, where <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> is the optimal solution to the complement LP of <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>. Finally, our results imply that, for any finite budget <em>b</em>, it is NP-hard to decide whether <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>≥</mo><mi>b</mi><mo>+</mo><mi>c</mi></math></span> for any <span><math><mn>1</mn><mo>≤</mo><mi>c</mi><mo>≤</mo><mi>b</mi><mo>−</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1032 ","pages":"Article 115087"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525000258","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduce a new operation for Linear Programming (LP), called LP complementation, which resembles many properties of LP duality. Given a maximisation (resp. minimisation) LP P, we define its complement Q as a specific minimisation (resp. maximisation) LP which has the same objective function as P. Our central result is the LP complementation theorem, that relates the optimal value
of P and the optimal value
of its complement by
. The LP complementation operation can be applied if and only if P has an optimum value greater than 1.
To illustrate this, we first apply LP complementation to hypergraphs. For any hypergraph H, we review the four classical LPs, namely covering K(H), packing P(H), matching M(H), and transversal T(H). For every hypergraph H=(V,E), we call
the complement of H. For each of the above four LPs, we relate the optimal values of the LP for the dual hypergraph
to that of the complement hypergraph
(e.g.
).
We then apply LP complementation to fractional graph theory. We prove that the LP for the fractional in-dominating number of a digraph D is the complement of the LP for the fractional total out-dominating number of the digraph complement
of D. Furthermore we apply the hypergraph complementation theorem to matroids. We establish that the fractional matching number of a matroid coincide with its edge toughness.
As our last application of LP complementation, we introduce the natural problem Vertex Cover with Budget (VCB): for a graph G=(V,E) and a positive integer b, what is the maximum number tb of vertex covers S1,,Stb of G, such that every vertex vV appears in at most b vertex covers? The integer b can be viewed as a “budget” that we can spend on each vertex and, given this budget, we aim to cover all edges for as long as possible. We relate VCB with the LP QG for the fractional chromatic number χf of a graph G. More specifically, we prove that, as b, the optimum for VCB satisfies tbtfb, where tf is the optimal solution to the complement LP of QG. Finally, our results imply that, for any finite budget b, it is NP-hard to decide whether tbb+c for any 1cb1.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信