Surface deformation of the 26 January 2021 earthquake in the Sinjar – Hasakah Area, N Iraq and NE Syria, from Sentinel‑1A InSAR images

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Jamal A.H. Doski
{"title":"Surface deformation of the 26 January 2021 earthquake in the Sinjar – Hasakah Area, N Iraq and NE Syria, from Sentinel‑1A InSAR images","authors":"Jamal A.H. Doski","doi":"10.1016/j.ejrs.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>The deformation of Earth’s surface caused by earthquakes stands as a critical geological hazard in regions characterized by active tectonic structures. This study investigates the impact of a low-to-moderate magnitude earthquake (Mw 4.9) that occurred on January 26, 2021, in the Sinjar – Hasakah area (N Iraq and NE Syria). This seismic event marks the most significant occurrence in the study area over the past 48 years. The earthquake’s moment tensor solution suggests the presence of a right-lateral (dextral) strike-slip fault. 4 Sentinel-1A SAR images were processed by the DInSAR technique to analyze the surface deformation and identify the seismogenic fault of the 26 January 2021 earthquake. The most significant deformation observed along these active faults ranged from – 7.56 cm (subsidence) to + 3.75 cm (uplift) in the ascending orbit, and from – 4.56 cm (subsidence) to + 4.61 cm (uplift) in the descending orbit along the Line of Sight (LOS). It is inferred that the Hasakah seismogenic fault is responsible for the 26 January 2021 earthquake. This fault is a NW-trending, steeply dipping seismically active dextral strike-slip basement fault that formed during the Late Pliocene structural inversion. It extends over 120 km from the vicinity of Hasakah city in the northwest into the epicentral area in the southeast, traversing the boundary between the Sinjar and Abd El Aziz uplifts. Moreover, this seismogenic fault intersects with an active E-trending, S-dipping thrust basement fault that cuts through the northern limbs of both the Abd El Aziz and Sinjar anticlines.</div></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"28 1","pages":"Pages 128-137"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982325000043","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The deformation of Earth’s surface caused by earthquakes stands as a critical geological hazard in regions characterized by active tectonic structures. This study investigates the impact of a low-to-moderate magnitude earthquake (Mw 4.9) that occurred on January 26, 2021, in the Sinjar – Hasakah area (N Iraq and NE Syria). This seismic event marks the most significant occurrence in the study area over the past 48 years. The earthquake’s moment tensor solution suggests the presence of a right-lateral (dextral) strike-slip fault. 4 Sentinel-1A SAR images were processed by the DInSAR technique to analyze the surface deformation and identify the seismogenic fault of the 26 January 2021 earthquake. The most significant deformation observed along these active faults ranged from – 7.56 cm (subsidence) to + 3.75 cm (uplift) in the ascending orbit, and from – 4.56 cm (subsidence) to + 4.61 cm (uplift) in the descending orbit along the Line of Sight (LOS). It is inferred that the Hasakah seismogenic fault is responsible for the 26 January 2021 earthquake. This fault is a NW-trending, steeply dipping seismically active dextral strike-slip basement fault that formed during the Late Pliocene structural inversion. It extends over 120 km from the vicinity of Hasakah city in the northwest into the epicentral area in the southeast, traversing the boundary between the Sinjar and Abd El Aziz uplifts. Moreover, this seismogenic fault intersects with an active E-trending, S-dipping thrust basement fault that cuts through the northern limbs of both the Abd El Aziz and Sinjar anticlines.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信