Unveiling the Superiority of naphthylene over biphenylene in silicon carbide 2D Architectures

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jose A.S. Laranjeira , Nicolas F. Martins , Sérgio A. Azevedo , Pablo A. Denis , Julio R. Sambrano
{"title":"Unveiling the Superiority of naphthylene over biphenylene in silicon carbide 2D Architectures","authors":"Jose A.S. Laranjeira ,&nbsp;Nicolas F. Martins ,&nbsp;Sérgio A. Azevedo ,&nbsp;Pablo A. Denis ,&nbsp;Julio R. Sambrano","doi":"10.1016/j.commatsci.2025.113743","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, silicon carbide (SiC) has once again become a target of interest in the materials science community, this time with particular interest in two-dimensional materials, which have attracted attention due to their large surface area and infinitesimal volume. In this sense, this study introduces a novel SiC structure based on the recently reported naphthylene lattice, termed INP-SiC. It compares its electronic, mechanical and vibrational properties with the well-reported biphenylene-like SiC (BPN-SiC) via density functional theory (DFT) simulations. Both monolayers are stable at 300 K and exhibit high electron mobility, with INP-SiC reaching 94.890 10<sup>2</sup> cm<sup>2</sup>/V.s. INP-SiC also shows superior mechanical robustness, with Young’s modulus (171.65 N/m) comparable to g-SiC (178.02 N/m) and T-SiC (182.22 N/m). Overall, this work is dedicated to showing the INP-SiC potential as a multifunctional 2D platform.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"251 ","pages":"Article 113743"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625000862","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, silicon carbide (SiC) has once again become a target of interest in the materials science community, this time with particular interest in two-dimensional materials, which have attracted attention due to their large surface area and infinitesimal volume. In this sense, this study introduces a novel SiC structure based on the recently reported naphthylene lattice, termed INP-SiC. It compares its electronic, mechanical and vibrational properties with the well-reported biphenylene-like SiC (BPN-SiC) via density functional theory (DFT) simulations. Both monolayers are stable at 300 K and exhibit high electron mobility, with INP-SiC reaching 94.890 102 cm2/V.s. INP-SiC also shows superior mechanical robustness, with Young’s modulus (171.65 N/m) comparable to g-SiC (178.02 N/m) and T-SiC (182.22 N/m). Overall, this work is dedicated to showing the INP-SiC potential as a multifunctional 2D platform.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信