Prescribed mean curvature min-max theory in some non-compact manifolds

IF 1.5 1区 数学 Q1 MATHEMATICS
Liam Mazurowski
{"title":"Prescribed mean curvature min-max theory in some non-compact manifolds","authors":"Liam Mazurowski","doi":"10.1016/j.aim.2025.110133","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops a technique for applying one-parameter prescribed mean curvature min-max theory in certain non-compact manifolds. We give two main applications. First, fix a dimension <span><math><mn>3</mn><mo>≤</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>≤</mo><mn>7</mn></math></span> and consider a smooth function <span><math><mi>h</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>→</mo><mi>R</mi></math></span> which is asymptotic to a positive constant near infinity. We show that, under certain additional assumptions on <em>h</em>, there exists a closed hypersurface Σ in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> with mean curvature prescribed by <em>h</em>. Second, let <span><math><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><mi>g</mi><mo>)</mo></math></span> be an asymptotically flat 3-manifold with no boundary and fix a constant <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span>. We show that, under an additional assumption on <em>M</em>, it is possible to find a closed surface Σ of constant mean curvature <em>c</em> in <em>M</em>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"464 ","pages":"Article 110133"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825000313","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a technique for applying one-parameter prescribed mean curvature min-max theory in certain non-compact manifolds. We give two main applications. First, fix a dimension 3n+17 and consider a smooth function h:Rn+1R which is asymptotic to a positive constant near infinity. We show that, under certain additional assumptions on h, there exists a closed hypersurface Σ in Rn+1 with mean curvature prescribed by h. Second, let (M3,g) be an asymptotically flat 3-manifold with no boundary and fix a constant c>0. We show that, under an additional assumption on M, it is possible to find a closed surface Σ of constant mean curvature c in M.
非紧流形的规定平均曲率最小-极大理论
本文提出了一种将单参数规定平均曲率最小-极大理论应用于非紧流形的方法。我们给出了两个主要的应用。首先,确定一个维数3≤n+1≤7,并考虑一个光滑函数h:Rn+1→R在无穷近处渐近于一个正常数。我们证明了在h的某些附加假设下,在Rn+1中存在一个平均曲率由h规定的闭超曲面Σ。其次,设(M3,g)是一个无边界且固定常数c>;0的渐近平面3流形。我们证明,在M的附加假设下,有可能在M中找到一个平均曲率c为常数的闭曲面Σ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信