Coupling ICESat-2 and Sentinel-2 data for inversion of mangrove tidal flat to predict future distribution pattern of mangroves

IF 7.6 Q1 REMOTE SENSING
Xiaoyong Ming , Yichao Tian , Qiang Zhang , Yali Zhang , Jin Tao , Junliang Lin
{"title":"Coupling ICESat-2 and Sentinel-2 data for inversion of mangrove tidal flat to predict future distribution pattern of mangroves","authors":"Xiaoyong Ming ,&nbsp;Yichao Tian ,&nbsp;Qiang Zhang ,&nbsp;Yali Zhang ,&nbsp;Jin Tao ,&nbsp;Junliang Lin","doi":"10.1016/j.jag.2025.104398","DOIUrl":null,"url":null,"abstract":"<div><div>Tidal flats represent one of the Earth’s most critical ecosystems characterized by substantial ecological value, but these areas are also among the most fragile ecosystems. A detailed topography survey of tidal flat is essential for exploring how tidal flat ecosystems respond to environmental changes and for predicting morphological shifts, thereby impacting the protection and restoration of mangrove ecosystems. However, there is still a dearth of data available for mangrove tidal flat topography, as the majority of measurements primarily rely on traditional cartographic methods or small-scale surveys. Therefore, we aim to rely entirely on Earth observation satellite platforms, combining satellite-based Light Detection and Ranging (LiDAR) and optical remote sensing to monitor extensive mangrove tidal flat topography. This methodology was rigorously applied and validated on China’s largest and most representative mangrove tidal flats, revealing a Root Mean Square Error (RMSE) not exceeding 7.5 cm and an R-squared value surpassing 0.89 when compared to airborne LiDAR data. We use the inundation frequency derived from the long-term Sentinel-2 image sequences and elevation data extracted from the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) to establish a specific relationship between inundation frequency and ground elevation using both classical and generalized regression models, a mangrove tidal flat topography covering 76.9 km<sup>2</sup> was generated. Our findings delineate suitable distribution areas for mangroves in the Maowei Sea, covering an expansive 18.2 km<sup>2</sup>.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"136 ","pages":"Article 104398"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225000457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Tidal flats represent one of the Earth’s most critical ecosystems characterized by substantial ecological value, but these areas are also among the most fragile ecosystems. A detailed topography survey of tidal flat is essential for exploring how tidal flat ecosystems respond to environmental changes and for predicting morphological shifts, thereby impacting the protection and restoration of mangrove ecosystems. However, there is still a dearth of data available for mangrove tidal flat topography, as the majority of measurements primarily rely on traditional cartographic methods or small-scale surveys. Therefore, we aim to rely entirely on Earth observation satellite platforms, combining satellite-based Light Detection and Ranging (LiDAR) and optical remote sensing to monitor extensive mangrove tidal flat topography. This methodology was rigorously applied and validated on China’s largest and most representative mangrove tidal flats, revealing a Root Mean Square Error (RMSE) not exceeding 7.5 cm and an R-squared value surpassing 0.89 when compared to airborne LiDAR data. We use the inundation frequency derived from the long-term Sentinel-2 image sequences and elevation data extracted from the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) to establish a specific relationship between inundation frequency and ground elevation using both classical and generalized regression models, a mangrove tidal flat topography covering 76.9 km2 was generated. Our findings delineate suitable distribution areas for mangroves in the Maowei Sea, covering an expansive 18.2 km2.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信