Towards faster plan adaptation for proton arc therapy using initial treatment plan information

IF 3.4 Q2 ONCOLOGY
Benjamin Roberfroid , Margerie Huet-Dastarac , Elena Borderías-Villarroel , Rodin Koffeing , John A. Lee , Ana M. Barragán-Montero , Edmond Sterpin
{"title":"Towards faster plan adaptation for proton arc therapy using initial treatment plan information","authors":"Benjamin Roberfroid ,&nbsp;Margerie Huet-Dastarac ,&nbsp;Elena Borderías-Villarroel ,&nbsp;Rodin Koffeing ,&nbsp;John A. Lee ,&nbsp;Ana M. Barragán-Montero ,&nbsp;Edmond Sterpin","doi":"10.1016/j.phro.2025.100705","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Purpose</h3><div>Proton arc therapy (PAT) is an emerging modality delivering continuously rotating proton beams. Current PAT planning approaches are time-consuming, making them unsuitable for online adaptation. This study proposes an accelerated workflow for adapting PAT plans.</div></div><div><h3>Materials and Methods</h3><div>The proposed workflow transfers spots from initial computed tomography (CT) to the CT of the day, updates energy layers considering the initial pattern, and re-optimizes selected transferred spots based on their initial weights and impact on the objective function.</div><div>A retrospective study was conducted on five head and neck patients who underwent plan adaptation on a repeated CT. PAT plans were generated with two different methods on the repeated CT: <em>reference</em>, created de novo, and <em>smart-adapted</em>, generated with the proposed adaptive workflow. Robust optimization was performed for all plans.</div></div><div><h3>Results</h3><div><em>Smart-adapted</em> plans achieved similar mean dose to organs at risk as the <em>reference</em>: the largest median increase of mean dose was 1.9 Gy to the mandible; the median of maximum dose to spinal cord was 0.5 Gy lower for the <em>smart-adapted</em> plans. The median target coverage, i.e. D<sub>98</sub>, to primary tumor and nodes of <em>smart-adapted</em> plans decreased by 0.2 and 0.4 Gy for the nominal case, and 0.4 and 0.6 Gy for the worst-case scenario; all <em>smart-adapted</em> plans met clinical objectives. The smart-adaptation method reduced average planning time from 19184 s to 5626 s, a 3.4-fold improvement.</div></div><div><h3>Conclusions</h3><div><em>Smart-adapted</em> plans achieve similar plan quality to the reference method, while significantly reducing plan generation time for new patient anatomy.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100705"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Purpose

Proton arc therapy (PAT) is an emerging modality delivering continuously rotating proton beams. Current PAT planning approaches are time-consuming, making them unsuitable for online adaptation. This study proposes an accelerated workflow for adapting PAT plans.

Materials and Methods

The proposed workflow transfers spots from initial computed tomography (CT) to the CT of the day, updates energy layers considering the initial pattern, and re-optimizes selected transferred spots based on their initial weights and impact on the objective function.
A retrospective study was conducted on five head and neck patients who underwent plan adaptation on a repeated CT. PAT plans were generated with two different methods on the repeated CT: reference, created de novo, and smart-adapted, generated with the proposed adaptive workflow. Robust optimization was performed for all plans.

Results

Smart-adapted plans achieved similar mean dose to organs at risk as the reference: the largest median increase of mean dose was 1.9 Gy to the mandible; the median of maximum dose to spinal cord was 0.5 Gy lower for the smart-adapted plans. The median target coverage, i.e. D98, to primary tumor and nodes of smart-adapted plans decreased by 0.2 and 0.4 Gy for the nominal case, and 0.4 and 0.6 Gy for the worst-case scenario; all smart-adapted plans met clinical objectives. The smart-adaptation method reduced average planning time from 19184 s to 5626 s, a 3.4-fold improvement.

Conclusions

Smart-adapted plans achieve similar plan quality to the reference method, while significantly reducing plan generation time for new patient anatomy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信