Synthetic Computed Tomography generation using deep-learning for female pelvic radiotherapy planning

IF 3.4 Q2 ONCOLOGY
Rachael Tulip , Sebastian Andersson , Robert Chuter , Spyros Manolopoulos
{"title":"Synthetic Computed Tomography generation using deep-learning for female pelvic radiotherapy planning","authors":"Rachael Tulip ,&nbsp;Sebastian Andersson ,&nbsp;Robert Chuter ,&nbsp;Spyros Manolopoulos","doi":"10.1016/j.phro.2025.100719","DOIUrl":null,"url":null,"abstract":"<div><div>Synthetic Computed Tomography (sCT) is required to provide electron density information for MR-only radiotherapy. Deep-learning (DL) methods for sCT generation show improved dose congruence over other sCT generation methods (e.g. bulk density). Using 30 female pelvis datasets to train a cycleGAN-inspired DL model, this study found mean dose differences between a deformed planning CT (dCT) and sCT were 0.2 % (D98 %). Three Dimensional Gamma analysis showed a mean of 90.4 % at 1 %/1mm. This study showed accurate sCTs (dose) can be generated from routinely available T2 spin echo sequences without the need for additional specialist sequences.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100719"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic Computed Tomography (sCT) is required to provide electron density information for MR-only radiotherapy. Deep-learning (DL) methods for sCT generation show improved dose congruence over other sCT generation methods (e.g. bulk density). Using 30 female pelvis datasets to train a cycleGAN-inspired DL model, this study found mean dose differences between a deformed planning CT (dCT) and sCT were 0.2 % (D98 %). Three Dimensional Gamma analysis showed a mean of 90.4 % at 1 %/1mm. This study showed accurate sCTs (dose) can be generated from routinely available T2 spin echo sequences without the need for additional specialist sequences.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信