Application of supported palladium nanoparticles over chitosan-agarose encapsulated Fe3O4 microspheres as efficient catalyst in the Sonogashira cross-coupling reactions

IF 2.1 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Ali Kakanejadifard , Parisa Safarimehr , Bikash Karmakar , Mozhgan Pirhayati , Hojat Veisi
{"title":"Application of supported palladium nanoparticles over chitosan-agarose encapsulated Fe3O4 microspheres as efficient catalyst in the Sonogashira cross-coupling reactions","authors":"Ali Kakanejadifard ,&nbsp;Parisa Safarimehr ,&nbsp;Bikash Karmakar ,&nbsp;Mozhgan Pirhayati ,&nbsp;Hojat Veisi","doi":"10.1016/j.jorganchem.2025.123553","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a simple and modified method for immobilizing Pd(0) NPs on the surface of dual functionalized magnetic Fe<sub>3</sub>O<sub>4</sub> microspheres with chitosan-agarose (CS-Agar) has been used. The high area surface showed a dispersion of the minuscule Pd NPs. The key role of the CS-Agar hydrogel is to reduce Pd ions via a green pathway, stabilizing them via capping in the process. In order to determine the morphological aspects of the synthesized material, it was subjected to a variety of physicochemical techniques, including FE-SEM (Field Emission Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy). The new material was studied catalytically as a reusable heterogeneous nanocatalyst that is effective in phosphine-free production of a variety of stilbene derivatives using the Sonogashira coupling method. Excellent results were obtained in every reaction, with the exception of chloroarenes and sterically hindered substrates. Without seeing a discernible decline in activity, the catalyst was reused seven times in a row.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1029 ","pages":"Article 123553"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X25000476","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a simple and modified method for immobilizing Pd(0) NPs on the surface of dual functionalized magnetic Fe3O4 microspheres with chitosan-agarose (CS-Agar) has been used. The high area surface showed a dispersion of the minuscule Pd NPs. The key role of the CS-Agar hydrogel is to reduce Pd ions via a green pathway, stabilizing them via capping in the process. In order to determine the morphological aspects of the synthesized material, it was subjected to a variety of physicochemical techniques, including FE-SEM (Field Emission Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy). The new material was studied catalytically as a reusable heterogeneous nanocatalyst that is effective in phosphine-free production of a variety of stilbene derivatives using the Sonogashira coupling method. Excellent results were obtained in every reaction, with the exception of chloroarenes and sterically hindered substrates. Without seeing a discernible decline in activity, the catalyst was reused seven times in a row.

Abstract Image

壳聚糖-琼脂糖包封Fe3O4微球上负载钯纳米粒子作为高效催化剂在Sonogashira交叉偶联反应中的应用
本文采用壳聚糖-琼脂糖(CS-Agar)在双功能化Fe3O4磁性微球表面固定化Pd(0) NPs的方法。高区表面显示微小Pd NPs的分散。cs -琼脂水凝胶的关键作用是通过绿色途径减少Pd离子,并在此过程中通过封盖使其稳定。为了确定合成材料的形态方面,对其进行了各种物理化学技术,包括FE-SEM(场发射扫描电子显微镜)和TEM(透射电子显微镜)。作为一种可重复使用的非均相纳米催化剂,利用Sonogashira偶联法对新材料进行了催化研究,该催化剂可有效地用于无磷化氢生产多种苯乙烯衍生物。除氯芳烃和位阻底物外,所有反应均取得了优异的结果。在没有看到活性明显下降的情况下,催化剂连续重复使用了七次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Organometallic Chemistry
Journal of Organometallic Chemistry 化学-无机化学与核化学
CiteScore
4.40
自引率
8.70%
发文量
221
审稿时长
36 days
期刊介绍: The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds. Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome. The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信