Monitoring arc-geodetic sets of oriented graphs

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Tapas Das , Florent Foucaud , Clara Marcille , P.D. Pavan , Sagnik Sen
{"title":"Monitoring arc-geodetic sets of oriented graphs","authors":"Tapas Das ,&nbsp;Florent Foucaud ,&nbsp;Clara Marcille ,&nbsp;P.D. Pavan ,&nbsp;Sagnik Sen","doi":"10.1016/j.tcs.2025.115079","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring edge-geodetic sets in a graph are subsets of vertices such that every edge of the graph must lie on all the shortest paths between two vertices of the monitoring set. These objects were introduced in a work by Foucaud, Krishna and Ramasubramony Sulochana with relation to several prior notions in the area of network monitoring like distance edge-monitoring.</div><div>In this work, we explore the extension of those notions unto oriented graphs, modelling oriented networks, and call these objects monitoring arc-geodetic sets. We also define the lower and upper monitoring arc-geodetic number of an undirected graph as the minimum and maximum of the monitoring arc-geodetic number of all orientations of the graph. We determine the monitoring arc-geodetic number of fundamental graph classes such as bipartite graphs, trees, cycles, etc. Then, we characterize the graphs for which every monitoring arc-geodetic set is the entire set of vertices, and also characterize the solutions for tournaments. We also cover some complexity aspects by studying two algorithmic problems. We show that the problem of determining if an undirected graph has an orientation with the minimal monitoring arc-geodetic set being the entire set of vertices, is NP-hard. We also show that the problem of finding a monitoring arc-geodetic set of size at most <em>k</em> is NP-complete when restricted to oriented graphs with maximum degree 4.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1031 ","pages":"Article 115079"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525000179","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring edge-geodetic sets in a graph are subsets of vertices such that every edge of the graph must lie on all the shortest paths between two vertices of the monitoring set. These objects were introduced in a work by Foucaud, Krishna and Ramasubramony Sulochana with relation to several prior notions in the area of network monitoring like distance edge-monitoring.
In this work, we explore the extension of those notions unto oriented graphs, modelling oriented networks, and call these objects monitoring arc-geodetic sets. We also define the lower and upper monitoring arc-geodetic number of an undirected graph as the minimum and maximum of the monitoring arc-geodetic number of all orientations of the graph. We determine the monitoring arc-geodetic number of fundamental graph classes such as bipartite graphs, trees, cycles, etc. Then, we characterize the graphs for which every monitoring arc-geodetic set is the entire set of vertices, and also characterize the solutions for tournaments. We also cover some complexity aspects by studying two algorithmic problems. We show that the problem of determining if an undirected graph has an orientation with the minimal monitoring arc-geodetic set being the entire set of vertices, is NP-hard. We also show that the problem of finding a monitoring arc-geodetic set of size at most k is NP-complete when restricted to oriented graphs with maximum degree 4.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信