On Conflict-Free Spanning Tree: Mapping tractable and hard instances through the lenses of graph classes

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Bruno José S. Barros , Luiz Satoru Ochi , Rian Gabriel S. Pinheiro , Uéverton S. Souza
{"title":"On Conflict-Free Spanning Tree: Mapping tractable and hard instances through the lenses of graph classes","authors":"Bruno José S. Barros ,&nbsp;Luiz Satoru Ochi ,&nbsp;Rian Gabriel S. Pinheiro ,&nbsp;Uéverton S. Souza","doi":"10.1016/j.tcs.2025.115081","DOIUrl":null,"url":null,"abstract":"<div><div>A natural constraint in real-world applications is avoiding conflicting elements in problem solutions. Let <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> be a graph where each edge <span><math><mi>e</mi><mo>∈</mo><mi>E</mi></math></span> has a positive integer weight <span><math><mi>ω</mi><mo>(</mo><mi>e</mi><mo>)</mo></math></span>, and let <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><mo>(</mo><mover><mrow><mi>V</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mover><mrow><mi>E</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> be a conflict graph such that <span><math><mover><mrow><mi>V</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>⊆</mo><mi>E</mi></math></span> and each edge <span><math><mover><mrow><mi>e</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mover><mrow><mi>E</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> represents a conflict between two edges <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>E</mi></math></span>. In the <span>Minimum Conflict-Free Spanning Tree (MCFST)</span> problem, we are asked to find a spanning tree avoiding pairs of conflicting edges (if such a tree exists) with minimum cost. In contrast to the polynomial-time solvability of <span>Minimum Spanning Tree</span>, to determine whether an instance <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> of <span>MCFST</span> admits a feasible solution is an <span><math><mi>NP</mi></math></span>-complete problem. In this paper, we present a multivariate complexity analysis of <span>MCFST</span> by considering particular classes of graphs <em>G</em> and <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>. We show that the problem of determining whether an instance <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> of <span>MCFST</span> has a feasible solution is <span><math><mi>NP</mi></math></span>-complete even if <em>G</em> is a bipartite planar subcubic graph, and <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> is a disjoint union of paths with three vertices. Contrastingly, we show that when <em>G</em> is complete and <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> is bipartite, then a solution for <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> can be found in linear time, while the problem of finding an optimal solution is <span><math><mi>NP</mi></math></span>-hard. Also, we present (in)approximability results for <span>MCFST</span> on complete graphs <em>G</em>, and a parameterized algorithm regarding the distance from the conflict graph to a hereditary graph class <span><math><mi>F</mi></math></span> for which <span>MCFST</span> on <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>∈</mo><mi>F</mi></math></span> is polynomial-time solvable.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1031 ","pages":"Article 115081"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525000192","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A natural constraint in real-world applications is avoiding conflicting elements in problem solutions. Let G=(V,E) be a graph where each edge eE has a positive integer weight ω(e), and let Gˆ=(Vˆ,Eˆ) be a conflict graph such that VˆE and each edge eˆ=e1e2Eˆ represents a conflict between two edges e1,e2E. In the Minimum Conflict-Free Spanning Tree (MCFST) problem, we are asked to find a spanning tree avoiding pairs of conflicting edges (if such a tree exists) with minimum cost. In contrast to the polynomial-time solvability of Minimum Spanning Tree, to determine whether an instance (G,Gˆ) of MCFST admits a feasible solution is an NP-complete problem. In this paper, we present a multivariate complexity analysis of MCFST by considering particular classes of graphs G and Gˆ. We show that the problem of determining whether an instance (G,Gˆ) of MCFST has a feasible solution is NP-complete even if G is a bipartite planar subcubic graph, and Gˆ is a disjoint union of paths with three vertices. Contrastingly, we show that when G is complete and Gˆ is bipartite, then a solution for (G,Gˆ) can be found in linear time, while the problem of finding an optimal solution is NP-hard. Also, we present (in)approximability results for MCFST on complete graphs G, and a parameterized algorithm regarding the distance from the conflict graph to a hereditary graph class F for which MCFST on GˆF is polynomial-time solvable.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信