Bruno José S. Barros , Luiz Satoru Ochi , Rian Gabriel S. Pinheiro , Uéverton S. Souza
{"title":"On Conflict-Free Spanning Tree: Mapping tractable and hard instances through the lenses of graph classes","authors":"Bruno José S. Barros , Luiz Satoru Ochi , Rian Gabriel S. Pinheiro , Uéverton S. Souza","doi":"10.1016/j.tcs.2025.115081","DOIUrl":null,"url":null,"abstract":"<div><div>A natural constraint in real-world applications is avoiding conflicting elements in problem solutions. Let <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> be a graph where each edge <span><math><mi>e</mi><mo>∈</mo><mi>E</mi></math></span> has a positive integer weight <span><math><mi>ω</mi><mo>(</mo><mi>e</mi><mo>)</mo></math></span>, and let <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><mo>(</mo><mover><mrow><mi>V</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mover><mrow><mi>E</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> be a conflict graph such that <span><math><mover><mrow><mi>V</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>⊆</mo><mi>E</mi></math></span> and each edge <span><math><mover><mrow><mi>e</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>=</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mover><mrow><mi>E</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> represents a conflict between two edges <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>E</mi></math></span>. In the <span>Minimum Conflict-Free Spanning Tree (MCFST)</span> problem, we are asked to find a spanning tree avoiding pairs of conflicting edges (if such a tree exists) with minimum cost. In contrast to the polynomial-time solvability of <span>Minimum Spanning Tree</span>, to determine whether an instance <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> of <span>MCFST</span> admits a feasible solution is an <span><math><mi>NP</mi></math></span>-complete problem. In this paper, we present a multivariate complexity analysis of <span>MCFST</span> by considering particular classes of graphs <em>G</em> and <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>. We show that the problem of determining whether an instance <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> of <span>MCFST</span> has a feasible solution is <span><math><mi>NP</mi></math></span>-complete even if <em>G</em> is a bipartite planar subcubic graph, and <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> is a disjoint union of paths with three vertices. Contrastingly, we show that when <em>G</em> is complete and <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> is bipartite, then a solution for <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> can be found in linear time, while the problem of finding an optimal solution is <span><math><mi>NP</mi></math></span>-hard. Also, we present (in)approximability results for <span>MCFST</span> on complete graphs <em>G</em>, and a parameterized algorithm regarding the distance from the conflict graph to a hereditary graph class <span><math><mi>F</mi></math></span> for which <span>MCFST</span> on <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>∈</mo><mi>F</mi></math></span> is polynomial-time solvable.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1031 ","pages":"Article 115081"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525000192","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A natural constraint in real-world applications is avoiding conflicting elements in problem solutions. Let be a graph where each edge has a positive integer weight , and let be a conflict graph such that and each edge represents a conflict between two edges . In the Minimum Conflict-Free Spanning Tree (MCFST) problem, we are asked to find a spanning tree avoiding pairs of conflicting edges (if such a tree exists) with minimum cost. In contrast to the polynomial-time solvability of Minimum Spanning Tree, to determine whether an instance of MCFST admits a feasible solution is an -complete problem. In this paper, we present a multivariate complexity analysis of MCFST by considering particular classes of graphs G and . We show that the problem of determining whether an instance of MCFST has a feasible solution is -complete even if G is a bipartite planar subcubic graph, and is a disjoint union of paths with three vertices. Contrastingly, we show that when G is complete and is bipartite, then a solution for can be found in linear time, while the problem of finding an optimal solution is -hard. Also, we present (in)approximability results for MCFST on complete graphs G, and a parameterized algorithm regarding the distance from the conflict graph to a hereditary graph class for which MCFST on is polynomial-time solvable.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.