{"title":"Groundwater at the southern pole of the Moon via the gravity strike angles: IM-1 and Artemis","authors":"Jaroslav Klokočník , Jan Kostelecký , Aleš Bezděk","doi":"10.1016/j.pss.2025.106037","DOIUrl":null,"url":null,"abstract":"<div><div>Gravity strike angles are one of the gravity aspects. They are computed from global static gravity field models. They react to changes in density variation and porosity. Internal rock anisotropy and stresses can be detected by strike angles. They run parallel with the direction of weakness in the strength of the rock, e.g., the direction schistosity and/or the presence of faults or micro-fault zones. Thus, they can help to describe the underground causative body in another way than traditional gravity anomalies. We used the GRGM1200A gravity field model for the Moon to the degree and order of 600 in spherical harmonic expansion and LOLA topography. The results show that the strike angles are more frequently and more intensively aligned (combed) near the poles than in other places. The strike angles are highly combed for the Malapert A crater (the landing site of IM-1/Odyssey) as well as for the localities selected by NASA for the forthcoming Artemis missions. Our method, which has already been applied many times on diverse geological features on the Earth, provides quick and cheap remote sensing procedure, a preliminary diagnostic tool, independent of all others, in search of lunar water.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"256 ","pages":"Article 106037"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063325000042","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gravity strike angles are one of the gravity aspects. They are computed from global static gravity field models. They react to changes in density variation and porosity. Internal rock anisotropy and stresses can be detected by strike angles. They run parallel with the direction of weakness in the strength of the rock, e.g., the direction schistosity and/or the presence of faults or micro-fault zones. Thus, they can help to describe the underground causative body in another way than traditional gravity anomalies. We used the GRGM1200A gravity field model for the Moon to the degree and order of 600 in spherical harmonic expansion and LOLA topography. The results show that the strike angles are more frequently and more intensively aligned (combed) near the poles than in other places. The strike angles are highly combed for the Malapert A crater (the landing site of IM-1/Odyssey) as well as for the localities selected by NASA for the forthcoming Artemis missions. Our method, which has already been applied many times on diverse geological features on the Earth, provides quick and cheap remote sensing procedure, a preliminary diagnostic tool, independent of all others, in search of lunar water.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research