Lightweight and polarized self-attention mechanism for abnormal morphology classification algorithm during traditional Chinese medicine inspection

Q3 Medicine
Zhang Qi , Hu Kongfa , Wang Tianshu , Yang Tao
{"title":"Lightweight and polarized self-attention mechanism for abnormal morphology classification algorithm during traditional Chinese medicine inspection","authors":"Zhang Qi ,&nbsp;Hu Kongfa ,&nbsp;Wang Tianshu ,&nbsp;Yang Tao","doi":"10.1016/j.dcmed.2024.12.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To propose a Light-Atten-Pose-based algorithm for classifying abnormal morphology in traditional Chinese medicine (TCM) inspection to solve the problem of relying on manual labor or expensive equipment with personal subjectivity or high cost.</div></div><div><h3>Methods</h3><div>First, this paper establishes a dataset of abnormal morphology for Chinese medicine diagnosis, with images from public resources and labeled with category labels by several Chinese medicine experts, including three categories: normal, shoulder abnormality, and leg abnormality. Second, the key points of human body are extracted by Light-Atten-Pose algorithm. Light-Atten-Pose algorithm uses lightweight EfficientNet network and polarized self-attention (PSA) mechanism on the basis of AlphaPose, which reduces the computation amount by using EfficientNet network, and the data is finely processed by using PSA mechanism in spatial and channel dimensions. Finally, according to the theory of TCM inspection, the abnormal morphology standard based on the joint angle difference is defined, and the classification of abnormal morphology of Chinese medical diagnosis is realized by calculating the angle between key points. Accuracy, frames per second (FPS), model size, parameter set (Params), and giga floating-point operations per second (GFLOPs) are chosen as the evaluation indexes for lightweighting.</div></div><div><h3>Results</h3><div>Validation of the Light-Atten-Pose algorithm on the dataset showed a classification accuracy of 96.23%, which is close to the original AlphaPose model. However, the FPS of the improved model reaches 41.6 fps from 16.5 fps, the model size is reduced from 155.11 MB to 33.67 MB, the Params decreases from 40.5 M to 8.6 M, and the GFLOPs reduces from 11.93 to 2.10.</div></div><div><h3>Conclusion</h3><div>The Light-Atten-Pose algorithm achieves lightweight while maintaining high robustness, resulting in lower complexity and resource consumption and higher classification accuracy, and the experiments prove that the Light-Atten-Pose algorithm has a better overall performance and has practical application in the pose estimation task.</div></div>","PeriodicalId":33578,"journal":{"name":"Digital Chinese Medicine","volume":"7 3","pages":"Pages 256-263"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589377724000612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To propose a Light-Atten-Pose-based algorithm for classifying abnormal morphology in traditional Chinese medicine (TCM) inspection to solve the problem of relying on manual labor or expensive equipment with personal subjectivity or high cost.

Methods

First, this paper establishes a dataset of abnormal morphology for Chinese medicine diagnosis, with images from public resources and labeled with category labels by several Chinese medicine experts, including three categories: normal, shoulder abnormality, and leg abnormality. Second, the key points of human body are extracted by Light-Atten-Pose algorithm. Light-Atten-Pose algorithm uses lightweight EfficientNet network and polarized self-attention (PSA) mechanism on the basis of AlphaPose, which reduces the computation amount by using EfficientNet network, and the data is finely processed by using PSA mechanism in spatial and channel dimensions. Finally, according to the theory of TCM inspection, the abnormal morphology standard based on the joint angle difference is defined, and the classification of abnormal morphology of Chinese medical diagnosis is realized by calculating the angle between key points. Accuracy, frames per second (FPS), model size, parameter set (Params), and giga floating-point operations per second (GFLOPs) are chosen as the evaluation indexes for lightweighting.

Results

Validation of the Light-Atten-Pose algorithm on the dataset showed a classification accuracy of 96.23%, which is close to the original AlphaPose model. However, the FPS of the improved model reaches 41.6 fps from 16.5 fps, the model size is reduced from 155.11 MB to 33.67 MB, the Params decreases from 40.5 M to 8.6 M, and the GFLOPs reduces from 11.93 to 2.10.

Conclusion

The Light-Atten-Pose algorithm achieves lightweight while maintaining high robustness, resulting in lower complexity and resource consumption and higher classification accuracy, and the experiments prove that the Light-Atten-Pose algorithm has a better overall performance and has practical application in the pose estimation task.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Chinese Medicine
Digital Chinese Medicine Medicine-Complementary and Alternative Medicine
CiteScore
1.80
自引率
0.00%
发文量
126
审稿时长
63 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信