{"title":"Profile cut-off phenomenon for the ergodic Feller root process","authors":"Gerardo Barrera , Liliana Esquivel","doi":"10.1016/j.spa.2025.104587","DOIUrl":null,"url":null,"abstract":"<div><div>The present manuscript is devoted to the study of the convergence to equilibrium as the noise intensity <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span> tends to zero for ergodic random systems out of equilibrium driven by multiplicative non-linear noise of the type <span><span><span><math><mrow><mi>d</mi><msubsup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>ɛ</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mi>b</mi><mo>−</mo><mi>a</mi><msubsup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>ɛ</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>t</mi><mo>+</mo><mi>ɛ</mi><msqrt><mrow><msubsup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>ɛ</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></msqrt><mi>d</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><mspace></mspace><msubsup><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>ɛ</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>x</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>⩾</mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>x</mi><mo>⩾</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>b</mi><mo>></mo><mn>0</mn></mrow></math></span> are constants, and <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>⩾</mo><mn>0</mn></mrow></msub></math></span> is a one dimensional standard Brownian motion. More precisely, we show the strongest notion of asymptotic profile cut-off phenomenon in the total variation distance and in the renormalized Wasserstein distance when <span><math><mi>ɛ</mi></math></span> tends to zero with explicit cut-off time, explicit time window, and explicit profile function. In addition, asymptotics of the so-called mixing times are given explicitly.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"183 ","pages":"Article 104587"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000286","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The present manuscript is devoted to the study of the convergence to equilibrium as the noise intensity tends to zero for ergodic random systems out of equilibrium driven by multiplicative non-linear noise of the type where , and are constants, and is a one dimensional standard Brownian motion. More precisely, we show the strongest notion of asymptotic profile cut-off phenomenon in the total variation distance and in the renormalized Wasserstein distance when tends to zero with explicit cut-off time, explicit time window, and explicit profile function. In addition, asymptotics of the so-called mixing times are given explicitly.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.