Profile cut-off phenomenon for the ergodic Feller root process

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Gerardo Barrera , Liliana Esquivel
{"title":"Profile cut-off phenomenon for the ergodic Feller root process","authors":"Gerardo Barrera ,&nbsp;Liliana Esquivel","doi":"10.1016/j.spa.2025.104587","DOIUrl":null,"url":null,"abstract":"<div><div>The present manuscript is devoted to the study of the convergence to equilibrium as the noise intensity <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> tends to zero for ergodic random systems out of equilibrium driven by multiplicative non-linear noise of the type <span><span><span><math><mrow><mi>d</mi><msubsup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>ɛ</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mi>b</mi><mo>−</mo><mi>a</mi><msubsup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>ɛ</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>t</mi><mo>+</mo><mi>ɛ</mi><msqrt><mrow><msubsup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>ɛ</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></msqrt><mi>d</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><mspace></mspace><msubsup><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>ɛ</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>x</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>⩾</mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>x</mi><mo>⩾</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>a</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>b</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> are constants, and <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>⩾</mo><mn>0</mn></mrow></msub></math></span> is a one dimensional standard Brownian motion. More precisely, we show the strongest notion of asymptotic profile cut-off phenomenon in the total variation distance and in the renormalized Wasserstein distance when <span><math><mi>ɛ</mi></math></span> tends to zero with explicit cut-off time, explicit time window, and explicit profile function. In addition, asymptotics of the so-called mixing times are given explicitly.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"183 ","pages":"Article 104587"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000286","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The present manuscript is devoted to the study of the convergence to equilibrium as the noise intensity ɛ>0 tends to zero for ergodic random systems out of equilibrium driven by multiplicative non-linear noise of the type dXtɛ(x)=(baXtɛ(x))dt+ɛXtɛ(x)dBt,X0ɛ(x)=x,t0,where x0, a>0 and b>0 are constants, and (Bt)t0 is a one dimensional standard Brownian motion. More precisely, we show the strongest notion of asymptotic profile cut-off phenomenon in the total variation distance and in the renormalized Wasserstein distance when ɛ tends to zero with explicit cut-off time, explicit time window, and explicit profile function. In addition, asymptotics of the so-called mixing times are given explicitly.
遍历费勒根过程剖面切断现象
本手稿致力于研究收敛到平衡的过程,因为噪声强度[>;0]趋向于零,对于由类型为dXt æ (x)=(b - aXt æ (x))dt+ [Xt æ (x)dBt,X0 æ (x)=x,t或大于或等于0的乘法非线性噪声驱动的遍历时随机系统,其中x或大于或等于0,a>;0和b>;0是常数,而(Bt)t或大于或等于0是一维标准布朗运动。更确切地说,当具有明确的截止时间、明确的时间窗和明确的剖面函数时,我们在总变差距离和重归一化Wasserstein距离中证明了渐近剖面截止现象的最强概念。此外,明确给出了所谓混合时间的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信