Low molecular weight organic acids mobilize soil organic phosphorus for enzymatic hydrolysis in a temperate montane peatland

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Yuchen Suo, Tong Li, Christian von Sperber, Leming Ge, Chenhao Cao, Zhifeng Zhai, Zhaojun Bu, Meng Wang
{"title":"Low molecular weight organic acids mobilize soil organic phosphorus for enzymatic hydrolysis in a temperate montane peatland","authors":"Yuchen Suo,&nbsp;Tong Li,&nbsp;Christian von Sperber,&nbsp;Leming Ge,&nbsp;Chenhao Cao,&nbsp;Zhifeng Zhai,&nbsp;Zhaojun Bu,&nbsp;Meng Wang","doi":"10.1007/s10533-025-01210-1","DOIUrl":null,"url":null,"abstract":"<div><p>The stability of carbon (C) stocks in peatlands is intricately linked to phosphorus (P) bioavailability. Given that organic P compounds (P<sub>o</sub>) can make up to 89% of total soil P in these ecosystems, it is vital to understand their role in regulating plant productivity and organic matter decomposition. Despite this significance, the mechanisms controlling P bioavailability remain poorly understood. Plants and soil microorganisms primarily regulate the release of soil P via low-molecular-weight organic acids (LMWOAs) and modulate the hydrolysis of P<sub>o</sub> through phosphatase enzymes, particularly phosphomonoesterase, phytase, and phosphodiesterase. This study investigated the role of LMWOAs, derived from root exudates of dominant vascular plants and <i>Sphagnum</i> leachates in a temperate montane peatland, in facilitating the release of P. We also quantified the ability of these plants to hydrolyze P<sub>o</sub> from various LMWOA-extracted fractions by adding phosphomonoesterase, phytase, and phosphodiesterase. The results show that peatland plants predominantly exuded muconic, azelaic, 3-hydroxybutyric, and malonic acids. The concentration of enzymatically hydrolyzed P<sub>o</sub> in the water-extracted fraction was 8.1 ± 3.4 mg kg<sup>−1</sup>. Notably, azelaic and malonic acids were effective in releasing over 58% of soil P (330–798 mg kg<sup>−1</sup>), with more than 88% of this P being in organic form. In the azelaic and malonic acid-extracted fractions, the concentration of enzymatically hydrolyzed P<sub>o</sub> concentration was 123.7 ± 32.1 mg kg<sup>−1</sup>, accounting for 23% of the LMWOA-extracted P<sub>o</sub>. Phytase, the most important phosphatase enzyme, accounts for 66% (47–88%) of the enzymatically hydrolyzed P<sub>o</sub> (81.9 ± 20.9 mg kg<sup>−1</sup>). Our study demonstrates that LMWOA-mediated release of P<sub>o</sub> is an essential prerequisite for enzymatic hydrolysis of P<sub>o</sub> in organic peat soils. However, only a small portion of LMWOA-extracted P<sub>o</sub> can be hydrolyzed by phosphatase enzymes. The different composition and efficacy of LMWOAs from species of different plant functional types highlight the necessity to consider changes in vegetation composition, as this could significantly impact P dynamics in peatlands and, consequently, the stability of their C stocks.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01210-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-025-01210-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The stability of carbon (C) stocks in peatlands is intricately linked to phosphorus (P) bioavailability. Given that organic P compounds (Po) can make up to 89% of total soil P in these ecosystems, it is vital to understand their role in regulating plant productivity and organic matter decomposition. Despite this significance, the mechanisms controlling P bioavailability remain poorly understood. Plants and soil microorganisms primarily regulate the release of soil P via low-molecular-weight organic acids (LMWOAs) and modulate the hydrolysis of Po through phosphatase enzymes, particularly phosphomonoesterase, phytase, and phosphodiesterase. This study investigated the role of LMWOAs, derived from root exudates of dominant vascular plants and Sphagnum leachates in a temperate montane peatland, in facilitating the release of P. We also quantified the ability of these plants to hydrolyze Po from various LMWOA-extracted fractions by adding phosphomonoesterase, phytase, and phosphodiesterase. The results show that peatland plants predominantly exuded muconic, azelaic, 3-hydroxybutyric, and malonic acids. The concentration of enzymatically hydrolyzed Po in the water-extracted fraction was 8.1 ± 3.4 mg kg−1. Notably, azelaic and malonic acids were effective in releasing over 58% of soil P (330–798 mg kg−1), with more than 88% of this P being in organic form. In the azelaic and malonic acid-extracted fractions, the concentration of enzymatically hydrolyzed Po concentration was 123.7 ± 32.1 mg kg−1, accounting for 23% of the LMWOA-extracted Po. Phytase, the most important phosphatase enzyme, accounts for 66% (47–88%) of the enzymatically hydrolyzed Po (81.9 ± 20.9 mg kg−1). Our study demonstrates that LMWOA-mediated release of Po is an essential prerequisite for enzymatic hydrolysis of Po in organic peat soils. However, only a small portion of LMWOA-extracted Po can be hydrolyzed by phosphatase enzymes. The different composition and efficacy of LMWOAs from species of different plant functional types highlight the necessity to consider changes in vegetation composition, as this could significantly impact P dynamics in peatlands and, consequently, the stability of their C stocks.

低分子量有机酸在温带山地泥炭地调动土壤有机磷进行酶解
泥炭地碳(C)储量的稳定性与磷(P)的生物可利用性有着复杂的联系。考虑到有机磷化合物(Po)占这些生态系统土壤总磷的89%,了解它们在调节植物生产力和有机质分解中的作用至关重要。尽管具有这一意义,但控制磷生物利用度的机制仍然知之甚少。植物和土壤微生物主要通过低分子有机酸(LMWOAs)调节土壤磷的释放,并通过磷酸酶,特别是磷酸单酯酶、植酸酶和磷酸二酯酶来调节磷酸的水解。本研究考察了温带山地泥炭地优势维管植物和泥炭草浸出液中提取的LMWOAs在促进磷释放中的作用,并通过添加磷酸单酯酶、植酸酶和磷酸二酯酶,量化了这些植物水解不同lmwoa提取物中Po的能力。结果表明,泥炭地植物主要分泌黏液酸、壬二酸、3-羟基丁酸和丙二酸。水提液中酶解Po的浓度为8.1±3.4 mg kg−1。值得注意的是,壬二酸和丙二酸能有效释放超过58%的土壤磷(330-798 mg kg - 1),其中超过88%的磷以有机形式存在。在壬二酸和丙二酸萃取组分中,酶解Po浓度为123.7±32.1 mg kg−1,占lmwoa萃取Po的23%。其中最重要的磷酸酶植酸酶占酶解Po(81.9±20.9 mg kg−1)的66%(47 ~ 88%)。我们的研究表明,lmwoa介导的Po释放是有机泥炭土中Po酶解的必要前提。然而,只有一小部分lmwoa提取的Po能被磷酸酶水解。不同植物功能类型的低分子woas的组成和功效不同,强调了考虑植被组成变化的必要性,因为这可能会显著影响泥炭地P动态,从而影响其C储量的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信