{"title":"Reconfiguring the helmholtz plane with a trace polar additive for highly reversible Zinc anodes","authors":"Yu Lu, Yanxin Wang, Chenyang Guo, Mingyue Chen, Kunyu Hao, Pengcheng Qi, Yiwen Tang","doi":"10.1039/d5qi00035a","DOIUrl":null,"url":null,"abstract":"The performance stability of aqueous zinc-ion batteries (AZIBs) is closely linked to the properties of the inner Helmholtz plane (IHP) at the zinc anode/electrolyte interface. Excessive reactive H2O in the IHP significantly contributes to side reactions, including hydrogen evolution, passivation, and zinc dendrites formation. Here, a trace additive with abundant polar functional groups, thioacetamide (TAA), is introduced to modify the internal structure of the IHP and enhance the stability of zinc anodes. Both theoretical calculations and experiments demonstrate that TAA preferentially adsorbs onto the IHP at the zinc surface, reducing the decomposition of active H2O and suppressing side reactions. TAA also facilitates the uniform deposition of Zn2+ ions on the (002) crystal plane, effectively preventing dendrite formation. Consequently, the addition of 10 mM TAA to the ZnSO4 electrolyte significantly boosts the reversibility of zinc, achieving an improvement of nearly 13 times compared to the pure ZnSO4 electrolyte. Furthermore, the Zn||V6O13 full cell with the optimized electrolyte maintains excellent stability after 2000 cycles 3 A g-1, surpassing the performance of the pure ZnSO4 electrolyte.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"15 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi00035a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The performance stability of aqueous zinc-ion batteries (AZIBs) is closely linked to the properties of the inner Helmholtz plane (IHP) at the zinc anode/electrolyte interface. Excessive reactive H2O in the IHP significantly contributes to side reactions, including hydrogen evolution, passivation, and zinc dendrites formation. Here, a trace additive with abundant polar functional groups, thioacetamide (TAA), is introduced to modify the internal structure of the IHP and enhance the stability of zinc anodes. Both theoretical calculations and experiments demonstrate that TAA preferentially adsorbs onto the IHP at the zinc surface, reducing the decomposition of active H2O and suppressing side reactions. TAA also facilitates the uniform deposition of Zn2+ ions on the (002) crystal plane, effectively preventing dendrite formation. Consequently, the addition of 10 mM TAA to the ZnSO4 electrolyte significantly boosts the reversibility of zinc, achieving an improvement of nearly 13 times compared to the pure ZnSO4 electrolyte. Furthermore, the Zn||V6O13 full cell with the optimized electrolyte maintains excellent stability after 2000 cycles 3 A g-1, surpassing the performance of the pure ZnSO4 electrolyte.