Ludovic Zaza, Bojana Ranković, Philippe Schwaller, Raffaella Buonsanti
{"title":"A Holistic Data-Driven Approach to Synthesis Predictions of Colloidal Nanocrystal Shapes","authors":"Ludovic Zaza, Bojana Ranković, Philippe Schwaller, Raffaella Buonsanti","doi":"10.1021/jacs.4c17283","DOIUrl":null,"url":null,"abstract":"The ability to precisely design colloidal nanocrystals (NCs) has far-reaching implications in optoelectronics, catalysis, biomedicine, and beyond. Achieving such control is generally based on a trial-and-error approach. Data-driven synthesis holds promise to advance both discovery and mechanistic knowledge. Herein, we contribute to advancing the current state of the art in the chemical synthesis of colloidal NCs by proposing a machine-learning toolbox that operates in a low-data regime, yet comprehensive of the most typical parameters relevant for colloidal NC synthesis. The developed toolbox predicts the NC shape given the reaction conditions and proposes reaction conditions given a target NC shape using Cu NCs as the model system. By classifying NC shapes on a continuous energy scale, we synthesize an unreported shape, which is the Cu rhombic dodecahedron. This holistic approach integrates data-driven and computational tools with materials chemistry. Such development is promising to greatly accelerate materials discovery and mechanistic understanding, thus advancing the field of tailored materials with atomic-scale precision tunability.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"55 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17283","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to precisely design colloidal nanocrystals (NCs) has far-reaching implications in optoelectronics, catalysis, biomedicine, and beyond. Achieving such control is generally based on a trial-and-error approach. Data-driven synthesis holds promise to advance both discovery and mechanistic knowledge. Herein, we contribute to advancing the current state of the art in the chemical synthesis of colloidal NCs by proposing a machine-learning toolbox that operates in a low-data regime, yet comprehensive of the most typical parameters relevant for colloidal NC synthesis. The developed toolbox predicts the NC shape given the reaction conditions and proposes reaction conditions given a target NC shape using Cu NCs as the model system. By classifying NC shapes on a continuous energy scale, we synthesize an unreported shape, which is the Cu rhombic dodecahedron. This holistic approach integrates data-driven and computational tools with materials chemistry. Such development is promising to greatly accelerate materials discovery and mechanistic understanding, thus advancing the field of tailored materials with atomic-scale precision tunability.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.