Ultrafast emergence of ferromagnetism in antiferromagnetic FeRh in high magnetic fields.

npj Spintronics Pub Date : 2025-01-01 Epub Date: 2025-02-03 DOI:10.1038/s44306-024-00069-6
I A Dolgikh, T G H Blank, A G Buzdakov, G Li, K H Prabhakara, S K K Patel, R Medapalli, E E Fullerton, O V Koplak, J H Mentink, K A Zvezdin, A K Zvezdin, P C M Christianen, A V Kimel
{"title":"Ultrafast emergence of ferromagnetism in antiferromagnetic FeRh in high magnetic fields.","authors":"I A Dolgikh, T G H Blank, A G Buzdakov, G Li, K H Prabhakara, S K K Patel, R Medapalli, E E Fullerton, O V Koplak, J H Mentink, K A Zvezdin, A K Zvezdin, P C M Christianen, A V Kimel","doi":"10.1038/s44306-024-00069-6","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrafast heating of FeRh by a femtosecond laser pulse launches a magneto-structural phase transition from an antiferromagnetic to a ferromagnetic state. Aiming to reveal the ultrafast kinetics of this transition, we studied magnetization dynamics with the help of the magneto-optical Kerr effect in a broad range of temperatures (from 4 K to 400 K) and magnetic fields (up to 25 T). Three different types of ultrafast magnetization dynamics were observed and, using a numerically calculated H-T phase diagram, the differences were explained by different initial states of FeRh corresponding to a (i) collinear antiferromagnetic, (ii) canted antiferromagnetic and (iii) ferromagnetic alignment of spins. We argue that ultrafast heating of FeRh in the canted antiferromagnetic phase launches practically the fastest possible emergence of ferromagnetism in this material. The magnetization emerges on a time scale of 2 ps, which corresponds to the earlier reported time scale of the structural changes during the phase transition.</p>","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":"3 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790480/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44306-024-00069-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafast heating of FeRh by a femtosecond laser pulse launches a magneto-structural phase transition from an antiferromagnetic to a ferromagnetic state. Aiming to reveal the ultrafast kinetics of this transition, we studied magnetization dynamics with the help of the magneto-optical Kerr effect in a broad range of temperatures (from 4 K to 400 K) and magnetic fields (up to 25 T). Three different types of ultrafast magnetization dynamics were observed and, using a numerically calculated H-T phase diagram, the differences were explained by different initial states of FeRh corresponding to a (i) collinear antiferromagnetic, (ii) canted antiferromagnetic and (iii) ferromagnetic alignment of spins. We argue that ultrafast heating of FeRh in the canted antiferromagnetic phase launches practically the fastest possible emergence of ferromagnetism in this material. The magnetization emerges on a time scale of 2 ps, which corresponds to the earlier reported time scale of the structural changes during the phase transition.

高磁场下反铁磁FeRh中铁磁性的超快出现。
用飞秒激光脉冲对FeRh进行超快加热,引发了从反铁磁态到铁磁态的磁结构相变。为了揭示这种转变的超快动力学,我们借助磁光克尔效应在宽温度范围(从4 K到400 K)和磁场范围(高达25 T)下研究了磁化动力学。观察了三种不同类型的超快磁化动力学,并使用数值计算的H-T相图,解释了FeRh的不同初始状态对应于(i)共线反铁磁,(ii)倾斜反铁磁和(iii)自旋的铁磁排列。我们认为,在倾斜的反铁磁性相中,FeRh的超快加热实际上是该材料中最快的铁磁性出现。磁化出现在2ps的时间尺度上,这与之前报道的相变过程中结构变化的时间尺度相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信