Beam collimation and filtration optimization for a novel orthovoltage radiotherapy system.

Medical physics Pub Date : 2025-02-06 DOI:10.1002/mp.17662
Nathan Clements, Olivia Masella, Deae-Eddine Krim, Lane Braun, Magdalena Bazalova-Carter
{"title":"Beam collimation and filtration optimization for a novel orthovoltage radiotherapy system.","authors":"Nathan Clements, Olivia Masella, Deae-Eddine Krim, Lane Braun, Magdalena Bazalova-Carter","doi":"10.1002/mp.17662","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The inaccessibility of clinical linear accelerators in low- and middle-income countries creates a need for low-cost alternatives. Kilovoltage (kV) x-ray tubes have shown promise as a source that could meet this need. However, performing radiotherapy with a kV x-ray tube has numerous difficulties, including high skin dose, rapid dose fall-off, and low dose rates. These limitations create a need for highly effective beam collimation and filtration.</p><p><strong>Purpose: </strong>To improve the treatment potential of a novel kV x-ray system by optimizing an iris collimator and beam filtration using Bayesian techniques and Monte Carlo (MC) simulations.</p><p><strong>Methods: </strong>The Kilovoltage Optimized AcceLerated Adaptive therapy system's current beam configuration consists of a 225 kVp x-ray tube, a 12-leaflet tungsten iris collimator, and a 0.1 mm copper filter. A Bayesian optimization was performed for the large and small focal spot sizes of the kV x-ray tube source at 220 kVp using TopasOpt, an open-source library for optimization in TOPAS. Collimator thickness, copper filter thickness, source-to-collimator distance (SCD), and source-to-surface distance (SSD) were the variables considered in the optimization. The objective function was designed to maximize the dose rate and the dose at a depth of 5 cm while minimizing the beam penumbra width and the out-of-field dose (OFD), all evaluated in a water phantom. Post-optimization, the optimal beam configuration was simulated and compared to the existing configuration.</p><p><strong>Results: </strong>The optimal collimation setup consisted of 2.5 mm thick tungsten leaflets for the iris collimator and a 350 mm SSD for both focal spot sizes. The optimal copper filtration was 0.22 mm for the large focal spot and 0.15 mm for the small focal spot, with a SCD of 148.5 mm for the large focal spot and 125.8 mm for the small focal spot. For the large focal spot, the surface dose rate decreased by 9.4%, while the PDD at 5cm depth ( <math> <semantics><msub><mtext>PDD</mtext> <mrow><mn>5</mn> <mi>c</mi> <mi>m</mi></mrow> </msub> <annotation>$\\text{PDD}_{5\\textnormal {cm}}$</annotation></semantics> </math> ) increased by 7.7% compared to the existing iris collimator. Additionally, the surface beam penumbra width was reduced by 31.3%, and no significant changes in the OFD were observed. For the small focal spot, the surface dose rate for the new collimator increased by 3.7% and the <math> <semantics><msub><mtext>PDD</mtext> <mrow><mn>5</mn> <mi>c</mi> <mi>m</mi></mrow> </msub> <annotation>$\\text{PDD}_{5\\textnormal {cm}}$</annotation></semantics> </math> increased by 5.3%, with no statistically significant changes in the beam penumbra width or OFD.</p><p><strong>Conclusion: </strong>The optimal beam collimation and filtration for both x-ray tube focal spot sizes of a kV radiotherapy system was determined using Bayesian optimization and MC simulations and resulted in improved dose distributions.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The inaccessibility of clinical linear accelerators in low- and middle-income countries creates a need for low-cost alternatives. Kilovoltage (kV) x-ray tubes have shown promise as a source that could meet this need. However, performing radiotherapy with a kV x-ray tube has numerous difficulties, including high skin dose, rapid dose fall-off, and low dose rates. These limitations create a need for highly effective beam collimation and filtration.

Purpose: To improve the treatment potential of a novel kV x-ray system by optimizing an iris collimator and beam filtration using Bayesian techniques and Monte Carlo (MC) simulations.

Methods: The Kilovoltage Optimized AcceLerated Adaptive therapy system's current beam configuration consists of a 225 kVp x-ray tube, a 12-leaflet tungsten iris collimator, and a 0.1 mm copper filter. A Bayesian optimization was performed for the large and small focal spot sizes of the kV x-ray tube source at 220 kVp using TopasOpt, an open-source library for optimization in TOPAS. Collimator thickness, copper filter thickness, source-to-collimator distance (SCD), and source-to-surface distance (SSD) were the variables considered in the optimization. The objective function was designed to maximize the dose rate and the dose at a depth of 5 cm while minimizing the beam penumbra width and the out-of-field dose (OFD), all evaluated in a water phantom. Post-optimization, the optimal beam configuration was simulated and compared to the existing configuration.

Results: The optimal collimation setup consisted of 2.5 mm thick tungsten leaflets for the iris collimator and a 350 mm SSD for both focal spot sizes. The optimal copper filtration was 0.22 mm for the large focal spot and 0.15 mm for the small focal spot, with a SCD of 148.5 mm for the large focal spot and 125.8 mm for the small focal spot. For the large focal spot, the surface dose rate decreased by 9.4%, while the PDD at 5cm depth ( PDD 5 c m $\text{PDD}_{5\textnormal {cm}}$ ) increased by 7.7% compared to the existing iris collimator. Additionally, the surface beam penumbra width was reduced by 31.3%, and no significant changes in the OFD were observed. For the small focal spot, the surface dose rate for the new collimator increased by 3.7% and the PDD 5 c m $\text{PDD}_{5\textnormal {cm}}$ increased by 5.3%, with no statistically significant changes in the beam penumbra width or OFD.

Conclusion: The optimal beam collimation and filtration for both x-ray tube focal spot sizes of a kV radiotherapy system was determined using Bayesian optimization and MC simulations and resulted in improved dose distributions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信