Chan-Vese aided fuzzy C-means approach for whole breast and fibroglandular tissue segmentation: Preliminary application to real-world breast MRI.

Medical physics Pub Date : 2025-02-05 DOI:10.1002/mp.17660
Syed Furqan Qadri, Chao Rong, Mubashir Ahmad, Jing Li, Salman Qadri, Syeda Shamaila Zareen, Zeyu Zhuang, Salabat Khan, Hongxiang Lin
{"title":"Chan-Vese aided fuzzy C-means approach for whole breast and fibroglandular tissue segmentation: Preliminary application to real-world breast MRI.","authors":"Syed Furqan Qadri, Chao Rong, Mubashir Ahmad, Jing Li, Salman Qadri, Syeda Shamaila Zareen, Zeyu Zhuang, Salabat Khan, Hongxiang Lin","doi":"10.1002/mp.17660","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Magnetic resonance imaging (MRI) is a highly sensitive modality for diagnosing breast cancer, providing an expanding range of clinical usages that are crucial for the care of women at elevated risk of breast cancer development. Segmentation of the whole breast and fibroglandular tissue (FGT), used to evaluate breast cancer risk, is often manually delineated by radiologists in clinical practice. In this paper, we aim to substitute handcrafted breast density segmentation and categorization. The traditional fuzzy C-means (FCM) enable automatic segmentation but may be susceptible to heterogeneity or sparse FGT distribution in MRI.</p><p><strong>Purpose: </strong>We develop a new automated technique for the segmentation of whole breast and FGT for the coronal-view MRI.</p><p><strong>Methods: </strong>We propose a Chan-Vese (CV) aided FCM segmentation approach for estimating the FGT in the whole breast using fat-suppressed (FS) precontrast T1-weighted breast MRI. We present a methodology pipeline comprising region-of-interest (ROI) extraction, nonparametric non-uniform intensity normalization N4 algorithm-based intensity inhomogeneity correction, skin-layer extraction, and then whole breast and FGT segmentation. Our approach involves the FCM algorithm to assign membership degrees to pixels, distinguishing FGT regions from surrounding adipose tissues by assessing their probability of belonging to specific FGT regions, and subsequently, the region-based active contour CV model leverages these membership degrees to direct contour evolution and enhance segmentation boundaries. The proposed method adeptly tackles common challenges in MRI, including blurred edges, low contrast, and intensity inhomogeneity, with efficiency.</p><p><strong>Results: </strong>We evaluated our approach on the Duke Breast Cancer MRI data (DBCM-data) and achieved good segmentation accuracy in terms of Dice similarity coefficient (DSC), Intersection-over-Union (IoU), and Sensitivity (SEN). Our method demonstrates significant accuracy, achieving a DSC (%) of 93.2 ± 3.3 and 84.1 ± 4.9, IoU (%) of 86.4 ± 3.5 and 73.2 ± 5.1, and SEN 87.3 ± 4.1 and 76.7 ± 4.1 for the segmentations of whole breast and FGT, respectively.</p><p><strong>Conclusion: </strong>Our results demonstrated that the CV-aided FCM approach significantly outperformed the existing methods and resulted in significantly more accurate whole breast and FGT segmentation in MRI data.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Magnetic resonance imaging (MRI) is a highly sensitive modality for diagnosing breast cancer, providing an expanding range of clinical usages that are crucial for the care of women at elevated risk of breast cancer development. Segmentation of the whole breast and fibroglandular tissue (FGT), used to evaluate breast cancer risk, is often manually delineated by radiologists in clinical practice. In this paper, we aim to substitute handcrafted breast density segmentation and categorization. The traditional fuzzy C-means (FCM) enable automatic segmentation but may be susceptible to heterogeneity or sparse FGT distribution in MRI.

Purpose: We develop a new automated technique for the segmentation of whole breast and FGT for the coronal-view MRI.

Methods: We propose a Chan-Vese (CV) aided FCM segmentation approach for estimating the FGT in the whole breast using fat-suppressed (FS) precontrast T1-weighted breast MRI. We present a methodology pipeline comprising region-of-interest (ROI) extraction, nonparametric non-uniform intensity normalization N4 algorithm-based intensity inhomogeneity correction, skin-layer extraction, and then whole breast and FGT segmentation. Our approach involves the FCM algorithm to assign membership degrees to pixels, distinguishing FGT regions from surrounding adipose tissues by assessing their probability of belonging to specific FGT regions, and subsequently, the region-based active contour CV model leverages these membership degrees to direct contour evolution and enhance segmentation boundaries. The proposed method adeptly tackles common challenges in MRI, including blurred edges, low contrast, and intensity inhomogeneity, with efficiency.

Results: We evaluated our approach on the Duke Breast Cancer MRI data (DBCM-data) and achieved good segmentation accuracy in terms of Dice similarity coefficient (DSC), Intersection-over-Union (IoU), and Sensitivity (SEN). Our method demonstrates significant accuracy, achieving a DSC (%) of 93.2 ± 3.3 and 84.1 ± 4.9, IoU (%) of 86.4 ± 3.5 and 73.2 ± 5.1, and SEN 87.3 ± 4.1 and 76.7 ± 4.1 for the segmentations of whole breast and FGT, respectively.

Conclusion: Our results demonstrated that the CV-aided FCM approach significantly outperformed the existing methods and resulted in significantly more accurate whole breast and FGT segmentation in MRI data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信