Bidirectional f-Divergence-Based Deep Generative Method for Imputing Missing Values in Time-Series Data.

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2025-03-01 Epub Date: 2025-01-14 DOI:10.3390/stats8010007
Wen-Shan Liu, Tong Si, Aldas Kriauciunas, Marcus Snell, Haijun Gong
{"title":"Bidirectional f-Divergence-Based Deep Generative Method for Imputing Missing Values in Time-Series Data.","authors":"Wen-Shan Liu, Tong Si, Aldas Kriauciunas, Marcus Snell, Haijun Gong","doi":"10.3390/stats8010007","DOIUrl":null,"url":null,"abstract":"<p><p>Imputing missing values in high-dimensional time-series data remains a significant challenge in statistics and machine learning. Although various methods have been proposed in recent years, many struggle with limitations and reduced accuracy, particularly when the missing rate is high. In this work, we present a novel f-divergence-based bidirectional generative adversarial imputation network, tf-BiGAIN, designed to address these challenges in time-series data imputation. Unlike traditional imputation methods, tf-BiGAIN employs a generative model to synthesize missing values without relying on distributional assumptions. The imputation process is achieved by training two neural networks, implemented using bidirectional modified gated recurrent units, with f-divergence serving as the objective function to guide optimization. Compared to existing deep learning-based methods, tf-BiGAIN introduces two key innovations. First, the use of f-divergence provides a flexible and adaptable framework for optimizing the model across diverse imputation tasks, enhancing its versatility. Second, the use of bidirectional gated recurrent units allows the model to leverage both forward and backward temporal information. This bidirectional approach enables the model to effectively capture dependencies from both past and future observations, enhancing its imputation accuracy and robustness. We applied tf-BiGAIN to analyze two real-world time-series datasets, demonstrating its superior performance in imputing missing values and outperforming existing methods in terms of accuracy and robustness.</p>","PeriodicalId":93142,"journal":{"name":"Stats","volume":"8 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793919/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats8010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Imputing missing values in high-dimensional time-series data remains a significant challenge in statistics and machine learning. Although various methods have been proposed in recent years, many struggle with limitations and reduced accuracy, particularly when the missing rate is high. In this work, we present a novel f-divergence-based bidirectional generative adversarial imputation network, tf-BiGAIN, designed to address these challenges in time-series data imputation. Unlike traditional imputation methods, tf-BiGAIN employs a generative model to synthesize missing values without relying on distributional assumptions. The imputation process is achieved by training two neural networks, implemented using bidirectional modified gated recurrent units, with f-divergence serving as the objective function to guide optimization. Compared to existing deep learning-based methods, tf-BiGAIN introduces two key innovations. First, the use of f-divergence provides a flexible and adaptable framework for optimizing the model across diverse imputation tasks, enhancing its versatility. Second, the use of bidirectional gated recurrent units allows the model to leverage both forward and backward temporal information. This bidirectional approach enables the model to effectively capture dependencies from both past and future observations, enhancing its imputation accuracy and robustness. We applied tf-BiGAIN to analyze two real-world time-series datasets, demonstrating its superior performance in imputing missing values and outperforming existing methods in terms of accuracy and robustness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信