Novel transfer learning approach for hand drawn mathematical geometric shapes classification.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2652
Aneeza Alam, Ali Raza, Nisrean Thalji, Laith Abualigah, Helena Garay, Josep Alemany-Iturriaga, Imran Ashraf
{"title":"Novel transfer learning approach for hand drawn mathematical geometric shapes classification.","authors":"Aneeza Alam, Ali Raza, Nisrean Thalji, Laith Abualigah, Helena Garay, Josep Alemany-Iturriaga, Imran Ashraf","doi":"10.7717/peerj-cs.2652","DOIUrl":null,"url":null,"abstract":"<p><p>Hand-drawn mathematical geometric shapes are geometric figures, such as circles, triangles, squares, and polygons, sketched manually using pen and paper or digital tools. These shapes are fundamental in mathematics education and geometric problem-solving, serving as intuitive visual aids for understanding complex concepts and theories. Recognizing hand-drawn shapes accurately enables more efficient digitization of handwritten notes, enhances educational tools, and improves user interaction with mathematical software. This research proposes an innovative machine learning algorithm for the automatic classification of mathematical geometric shapes to identify and interpret these shapes from handwritten input, facilitating seamless integration with digital systems. We utilized a benchmark dataset of mathematical shapes based on a total of 20,000 images with eight classes circle, kite, parallelogram, square, rectangle, rhombus, trapezoid, and triangle. We introduced a novel machine-learning algorithm CnN-RFc that uses convolution neural networks (CNN) for spatial feature extraction and the random forest classifier for probabilistic feature extraction from image data. Experimental results illustrate that using the CnN-RFc method, the Light Gradient Boosting Machine (LGBM) algorithm surpasses state-of-the-art approaches with high accuracy scores of 98% for hand-drawn shape classification. Applications of the proposed mathematical geometric shape classification algorithm span various domains, including education, where it enhances interactive learning platforms and provides instant feedback to students.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2652"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798587/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2652","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Hand-drawn mathematical geometric shapes are geometric figures, such as circles, triangles, squares, and polygons, sketched manually using pen and paper or digital tools. These shapes are fundamental in mathematics education and geometric problem-solving, serving as intuitive visual aids for understanding complex concepts and theories. Recognizing hand-drawn shapes accurately enables more efficient digitization of handwritten notes, enhances educational tools, and improves user interaction with mathematical software. This research proposes an innovative machine learning algorithm for the automatic classification of mathematical geometric shapes to identify and interpret these shapes from handwritten input, facilitating seamless integration with digital systems. We utilized a benchmark dataset of mathematical shapes based on a total of 20,000 images with eight classes circle, kite, parallelogram, square, rectangle, rhombus, trapezoid, and triangle. We introduced a novel machine-learning algorithm CnN-RFc that uses convolution neural networks (CNN) for spatial feature extraction and the random forest classifier for probabilistic feature extraction from image data. Experimental results illustrate that using the CnN-RFc method, the Light Gradient Boosting Machine (LGBM) algorithm surpasses state-of-the-art approaches with high accuracy scores of 98% for hand-drawn shape classification. Applications of the proposed mathematical geometric shape classification algorithm span various domains, including education, where it enhances interactive learning platforms and provides instant feedback to students.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信