Towards human-AI collaboration in radiology: a multidimensional evaluation of the acceptability of AI for chest radiograph analysis in supporting pulmonary tuberculosis diagnosis.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2025-02-05 eCollection Date: 2025-02-01 DOI:10.1093/jamiaopen/ooae151
David Hua, Neysa Petrina, Alan J Sacks, Noel Young, Jin-Gun Cho, Ross Smith, Simon K Poon
{"title":"Towards human-AI collaboration in radiology: a multidimensional evaluation of the acceptability of AI for chest radiograph analysis in supporting pulmonary tuberculosis diagnosis.","authors":"David Hua, Neysa Petrina, Alan J Sacks, Noel Young, Jin-Gun Cho, Ross Smith, Simon K Poon","doi":"10.1093/jamiaopen/ooae151","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Artificial intelligence (AI) technology promises to be a powerful tool in addressing the global health challenges posed by tuberculosis (TB). However, evidence for its real-world impact is lacking, which may hinder safe, responsible adoption. This case study addresses this gap by assessing the technical performance, usability and workflow aspects, and health impact of implementing a commercial AI system (qXR by Qure.ai) to support Australian radiologists in diagnosing pulmonary TB.</p><p><strong>Materials and methods: </strong>A retrospective diagnostic accuracy evaluation was conducted to establish the technical performance of qXR in detecting TB compared to a human radiologist and microbiological reference standard. A qualitative human factors assessment was performed to investigate the user experience and clinical decision-making process of radiologists using qXR. A task productivity analysis was completed to quantify how the radiological screening turnaround time is impacted.</p><p><strong>Results: </strong>qXR displays near-human performance satisfying the World Health Organization's suggested accuracy profile. Radiologists reported high satisfaction with using qXR based on minimal workflow disruptions, respect for their professional autonomy, and limited increases in workload burden despite poor algorithm explainability. qXR delivers considerable productivity gains for normal cases and optimizes resource allocation through redistributing time from normal to abnormal cases.</p><p><strong>Discussion and conclusion: </strong>This study provides preliminary evidence of how an AI system with reasonable diagnostic accuracy and a human-centered user experience can meaningfully augment the TB diagnostic workflow. Future research needs to investigate the impact of AI on clinician accuracy, its relationship with efficiency, and best practices for optimizing the impact of clinician-AI collaboration.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 1","pages":"ooae151"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796096/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooae151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Artificial intelligence (AI) technology promises to be a powerful tool in addressing the global health challenges posed by tuberculosis (TB). However, evidence for its real-world impact is lacking, which may hinder safe, responsible adoption. This case study addresses this gap by assessing the technical performance, usability and workflow aspects, and health impact of implementing a commercial AI system (qXR by Qure.ai) to support Australian radiologists in diagnosing pulmonary TB.

Materials and methods: A retrospective diagnostic accuracy evaluation was conducted to establish the technical performance of qXR in detecting TB compared to a human radiologist and microbiological reference standard. A qualitative human factors assessment was performed to investigate the user experience and clinical decision-making process of radiologists using qXR. A task productivity analysis was completed to quantify how the radiological screening turnaround time is impacted.

Results: qXR displays near-human performance satisfying the World Health Organization's suggested accuracy profile. Radiologists reported high satisfaction with using qXR based on minimal workflow disruptions, respect for their professional autonomy, and limited increases in workload burden despite poor algorithm explainability. qXR delivers considerable productivity gains for normal cases and optimizes resource allocation through redistributing time from normal to abnormal cases.

Discussion and conclusion: This study provides preliminary evidence of how an AI system with reasonable diagnostic accuracy and a human-centered user experience can meaningfully augment the TB diagnostic workflow. Future research needs to investigate the impact of AI on clinician accuracy, its relationship with efficiency, and best practices for optimizing the impact of clinician-AI collaboration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信