{"title":"scRecover: Discriminating True and False Zeros in Single-Cell RNA-Seq Data for Imputation.","authors":"Zhun Miao, Xinyi Lin, Jiaqi Li, Joshua Ho, Qiuchen Meng, Xuegong Zhang","doi":"10.1002/sim.10334","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput single-cell RNA-seq (scRNA-seq) data contains an excess of zero values, which can be contributed by unexpressed genes and detection signal dropouts. Existing imputation methods fail to distinguish between these two types of zeros. In this study, we introduce a statistical framework that effectively differentiates true zeros (lack of expression) from false zeros (dropouts). By focusing only on imputing the dropout zeros, we developed a new imputation tool, scRecover. Our approach utilizes a zero-inflated negative binomial framework to model the gene expression of each gene in each cell, enabling the estimation of zero-dropout probability. Additionally, we employ a modified version of the Good and Toulmin model to identify true zeros for each gene. To achieve imputation, scRecover is combined with other imputation methods such as scImpute, SAVER and MAGIC. Down-sampling experiments show that it recovers dropout zeros with higher accuracy and avoids over-imputing true zero values. Experiments conducted on real world data highlight the ability of scRecover to enhance downstream analysis and visualization.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 5","pages":"e10334"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10334","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-throughput single-cell RNA-seq (scRNA-seq) data contains an excess of zero values, which can be contributed by unexpressed genes and detection signal dropouts. Existing imputation methods fail to distinguish between these two types of zeros. In this study, we introduce a statistical framework that effectively differentiates true zeros (lack of expression) from false zeros (dropouts). By focusing only on imputing the dropout zeros, we developed a new imputation tool, scRecover. Our approach utilizes a zero-inflated negative binomial framework to model the gene expression of each gene in each cell, enabling the estimation of zero-dropout probability. Additionally, we employ a modified version of the Good and Toulmin model to identify true zeros for each gene. To achieve imputation, scRecover is combined with other imputation methods such as scImpute, SAVER and MAGIC. Down-sampling experiments show that it recovers dropout zeros with higher accuracy and avoids over-imputing true zero values. Experiments conducted on real world data highlight the ability of scRecover to enhance downstream analysis and visualization.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.