Ermi Girsang, Chrismis N Ginting, I Nyoman Ehrich Lister, Wahyu Widowati, Afif Yati, Hanna Sari Widya Kusuma, Rizal Azis
{"title":"Antiaging properties of chlorogenic acid through protein and gene biomarkers in human skin fibroblast cells as photoaging model.","authors":"Ermi Girsang, Chrismis N Ginting, I Nyoman Ehrich Lister, Wahyu Widowati, Afif Yati, Hanna Sari Widya Kusuma, Rizal Azis","doi":"10.4103/RPS.RPS_177_22","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Chlorogenic acid (CA) is a natural chemical that promises antiaging activity against photoaging skin damage. This research examined CA activities in mitigating skin photoaging.</p><p><strong>Experimental approach: </strong>UV-exposed human skin fibroblast cells were subjected to CA at 6.25, 12.5, and 25 μg/mL. The protein levels of cell secretion, such as cyclooxygenase (COX)-2, nitric oxide (NO), and interleukin (IL)-6 were measured using ELISA and colorimetry methods. Meanwhile, the mRNA expressions of glutathione peroxidase (GPX)-1, tissue inhibitor metalloproteinase (TIMP)-1, matrix metalloproteinase (MMP)-1, caspase (CASP)-3, CASP-8, and fibroblast growth factor (FGF)-2 were quantified using the qRT-PCR method.</p><p><strong>Findings/results: </strong>CA treatment reduced inflammatory and aging biomarkers. CA at 6.25 μg/mL lowered NO, COX-2, and IL-6 levels to 89.44 μmol/L, 8.10 ng/mL, and 62.75 pg/mL, respectively. CA at 25 μg/mL resulted in the most significant down-regulation of MMP-1, CASP-3, and CASP-8 genes' expression (3.27, 1.25, and 3.59, respectively). Furthermore, treatment with CA at 25 µg/mL demonstrated the most notable activity in up-regulating antioxidant markers, specifically GPX-1, and extracellular matrix (ECM) integrity markers, including TIMP-1 and FGF-2 genes' expression.</p><p><strong>Conclusion and implications: </strong>CA imposes its anti-aging activity by decreasing inflammatory and aging biomarkers, and increasing cellular antioxidant and ECM integrity.</p>","PeriodicalId":21075,"journal":{"name":"Research in Pharmaceutical Sciences","volume":"19 6","pages":"746-753"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792716/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/RPS.RPS_177_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Chlorogenic acid (CA) is a natural chemical that promises antiaging activity against photoaging skin damage. This research examined CA activities in mitigating skin photoaging.
Experimental approach: UV-exposed human skin fibroblast cells were subjected to CA at 6.25, 12.5, and 25 μg/mL. The protein levels of cell secretion, such as cyclooxygenase (COX)-2, nitric oxide (NO), and interleukin (IL)-6 were measured using ELISA and colorimetry methods. Meanwhile, the mRNA expressions of glutathione peroxidase (GPX)-1, tissue inhibitor metalloproteinase (TIMP)-1, matrix metalloproteinase (MMP)-1, caspase (CASP)-3, CASP-8, and fibroblast growth factor (FGF)-2 were quantified using the qRT-PCR method.
Findings/results: CA treatment reduced inflammatory and aging biomarkers. CA at 6.25 μg/mL lowered NO, COX-2, and IL-6 levels to 89.44 μmol/L, 8.10 ng/mL, and 62.75 pg/mL, respectively. CA at 25 μg/mL resulted in the most significant down-regulation of MMP-1, CASP-3, and CASP-8 genes' expression (3.27, 1.25, and 3.59, respectively). Furthermore, treatment with CA at 25 µg/mL demonstrated the most notable activity in up-regulating antioxidant markers, specifically GPX-1, and extracellular matrix (ECM) integrity markers, including TIMP-1 and FGF-2 genes' expression.
Conclusion and implications: CA imposes its anti-aging activity by decreasing inflammatory and aging biomarkers, and increasing cellular antioxidant and ECM integrity.
期刊介绍:
Research in Pharmaceutical Sciences (RPS) is included in Thomson Reuters ESCI Web of Science (searchable at WoS master journal list), indexed with PubMed and PubMed Central and abstracted in the Elsevier Bibliographic Databases. Databases include Scopus, EMBASE, EMCare, EMBiology and Elsevier BIOBASE. It is also indexed in several specialized databases including Scientific Information Database (SID), Google Scholar, Iran Medex, Magiran, Index Copernicus (IC) and Islamic World Science Citation Center (ISC).