Artificial intelligence in kidney transplantation: a 30-year bibliometric analysis of research trends, innovations, and future directions.

IF 3 3区 医学 Q1 UROLOGY & NEPHROLOGY
Renal Failure Pub Date : 2025-12-01 Epub Date: 2025-02-05 DOI:10.1080/0886022X.2025.2458754
Ying Jia He, Pin Lin Liu, Tao Wei, Tao Liu, Yi Fei Li, Jing Yang, Wen Xing Fan
{"title":"Artificial intelligence in kidney transplantation: a 30-year bibliometric analysis of research trends, innovations, and future directions.","authors":"Ying Jia He, Pin Lin Liu, Tao Wei, Tao Liu, Yi Fei Li, Jing Yang, Wen Xing Fan","doi":"10.1080/0886022X.2025.2458754","DOIUrl":null,"url":null,"abstract":"<p><p>Kidney transplantation is the definitive treatment for end-stage renal disease (ESRD), yet challenges persist in optimizing donor-recipient matching, postoperative care, and immunosuppressive strategies. This study employs bibliometric analysis to evaluate 890 publications from 1993 to 2023, using tools such as CiteSpace and VOSviewer, to identify global trends, research hotspots, and future opportunities in applying artificial intelligence (AI) to kidney transplantation. Our analysis highlights the United States as the leading contributor to the field, with significant outputs from Mayo Clinic and leading authors like Cheungpasitporn W. Key research themes include AI-driven advancements in donor matching, deep learning for post-transplant monitoring, and machine learning algorithms for personalized immunosuppressive therapies. The findings underscore a rapid expansion in AI applications since 2017, with emerging trends in personalized medicine, multimodal data fusion, and telehealth. This bibliometric review provides a comprehensive resource for researchers and clinicians, offering insights into the evolution of AI in kidney transplantation and guiding future studies toward transformative applications in transplantation science.</p>","PeriodicalId":20839,"journal":{"name":"Renal Failure","volume":"47 1","pages":"2458754"},"PeriodicalIF":3.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renal Failure","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/0886022X.2025.2458754","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Kidney transplantation is the definitive treatment for end-stage renal disease (ESRD), yet challenges persist in optimizing donor-recipient matching, postoperative care, and immunosuppressive strategies. This study employs bibliometric analysis to evaluate 890 publications from 1993 to 2023, using tools such as CiteSpace and VOSviewer, to identify global trends, research hotspots, and future opportunities in applying artificial intelligence (AI) to kidney transplantation. Our analysis highlights the United States as the leading contributor to the field, with significant outputs from Mayo Clinic and leading authors like Cheungpasitporn W. Key research themes include AI-driven advancements in donor matching, deep learning for post-transplant monitoring, and machine learning algorithms for personalized immunosuppressive therapies. The findings underscore a rapid expansion in AI applications since 2017, with emerging trends in personalized medicine, multimodal data fusion, and telehealth. This bibliometric review provides a comprehensive resource for researchers and clinicians, offering insights into the evolution of AI in kidney transplantation and guiding future studies toward transformative applications in transplantation science.

肾移植中的人工智能:30年研究趋势、创新和未来方向的文献计量学分析。
肾移植是终末期肾病(ESRD)的最终治疗方法,但在优化供体-受体匹配、术后护理和免疫抑制策略方面仍然存在挑战。本研究利用CiteSpace和VOSviewer等工具,采用文献计量学分析方法,对1993年至2023年的890篇论文进行了评估,以确定人工智能(AI)在肾移植领域的全球趋势、研究热点和未来机遇。我们的分析强调,美国是该领域的主要贡献者,梅奥诊所和主要作者(如chungpasitporn W.)的重要成果包括人工智能驱动的供体匹配进展、移植后监测的深度学习以及个性化免疫抑制疗法的机器学习算法。这些发现突显了自2017年以来人工智能应用的快速扩张,个性化医疗、多模式数据融合和远程医疗等领域出现了新趋势。本文献计量学综述为研究人员和临床医生提供了一个全面的资源,提供了人工智能在肾移植中的发展的见解,并指导未来研究在移植科学中的变革性应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renal Failure
Renal Failure 医学-泌尿学与肾脏学
CiteScore
3.90
自引率
13.30%
发文量
374
审稿时长
1 months
期刊介绍: Renal Failure primarily concentrates on acute renal injury and its consequence, but also addresses advances in the fields of chronic renal failure, hypertension, and renal transplantation. Bringing together both clinical and experimental aspects of renal failure, this publication presents timely, practical information on pathology and pathophysiology of acute renal failure; nephrotoxicity of drugs and other substances; prevention, treatment, and therapy of renal failure; renal failure in association with transplantation, hypertension, and diabetes mellitus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信