{"title":"Development of a near-infrared fluorescent probe for the selective detection of severe hypoxia.","authors":"Takafumi Kasai, Kyohhei Fujita, Toru Komatsu, Tasuku Ueno, Ryosuke Kojima, Kenjiro Hanaoka, Yasuteru Urano","doi":"10.1039/d4cb00243a","DOIUrl":null,"url":null,"abstract":"<p><p>Severely hypoxic environments with oxygen concentrations around 1% are often found in serious diseases such as ischemia and cancer. However, existing near-infrared (NIR) fluorescent probes that can visualize hypoxia are also activated in mildly hypoxic environments (around 5% oxygen). Here, in order to selectively detect severe hypoxia, we used julolidine-based SiR (JSiR) as a NIR fluorophore and developed T-azoJSiR640 as a fluorescent probe. T-azoJSiR640 was able to detect severe hypoxia (around 1% oxygen concentration or less) in live cell imaging. Furthermore, the ischemic liver in a portal-vein-ligated mouse model was successfully visualized <i>in vivo</i>.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791654/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4cb00243a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Severely hypoxic environments with oxygen concentrations around 1% are often found in serious diseases such as ischemia and cancer. However, existing near-infrared (NIR) fluorescent probes that can visualize hypoxia are also activated in mildly hypoxic environments (around 5% oxygen). Here, in order to selectively detect severe hypoxia, we used julolidine-based SiR (JSiR) as a NIR fluorophore and developed T-azoJSiR640 as a fluorescent probe. T-azoJSiR640 was able to detect severe hypoxia (around 1% oxygen concentration or less) in live cell imaging. Furthermore, the ischemic liver in a portal-vein-ligated mouse model was successfully visualized in vivo.