CycleH-CUT: an unsupervised medical image translation method based on cycle consistency and hybrid contrastive learning.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Weiwei Jiang, Yingyu Qin, Xiaoyan Wang, Qiuju Chen, Qiu Guan, Minhua Lu
{"title":"CycleH-CUT: an unsupervised medical image translation method based on cycle consistency and hybrid contrastive learning.","authors":"Weiwei Jiang, Yingyu Qin, Xiaoyan Wang, Qiuju Chen, Qiu Guan, Minhua Lu","doi":"10.1088/1361-6560/adb2d7","DOIUrl":null,"url":null,"abstract":"<p><p>Unsupervised medical image translation tasks are challenging due to the difficulty of obtaining perfectly paired medical images. CycleGAN-based methods have proven effective in unpaired medical image translation. However, these methods can produce artifacts in the generated medical images. To address this issue, we propose an unsupervised network based on cycle consistency and hybrid contrastive unpaired translation (CycleH-CUT). CycleH-CUT consists of two CUT (H-CUT) networks. In the H-CUT network, a query-selected attention mechanism is adopted to select queries with important features. The boosted contrastive learning loss is employed to reweight all negative patches via the optimal transport strategy. We further apply spectral normalization to improve training stability, allowing the generator to extract complex features. On the basis of the H-CUT network, a new CycleH-CUT framework is proposed to integrate contrastive learning and cycle consistency. Two H-CUT networks are used to reconstruct the generated images back to the source domain, facilitating effective translation between unpaired medical images. We conduct extensive experiments on three public datasets (BraTS, OASIS3, and IXI) and a private Spinal Column dataset to demonstrate the effectiveness of CycleH-CUT and H-CUT. Specifically, CycleH-CUT achieves an average SSIM of 0.926 in the BraTS dataset, an average SSIM of 0.796 on the OASIS3 dataset, an average SSIM of 0.932 on the IXI dataset, and an average SSIM of 0.890 on the private Spinal Column dataset.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adb2d7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised medical image translation tasks are challenging due to the difficulty of obtaining perfectly paired medical images. CycleGAN-based methods have proven effective in unpaired medical image translation. However, these methods can produce artifacts in the generated medical images. To address this issue, we propose an unsupervised network based on cycle consistency and hybrid contrastive unpaired translation (CycleH-CUT). CycleH-CUT consists of two CUT (H-CUT) networks. In the H-CUT network, a query-selected attention mechanism is adopted to select queries with important features. The boosted contrastive learning loss is employed to reweight all negative patches via the optimal transport strategy. We further apply spectral normalization to improve training stability, allowing the generator to extract complex features. On the basis of the H-CUT network, a new CycleH-CUT framework is proposed to integrate contrastive learning and cycle consistency. Two H-CUT networks are used to reconstruct the generated images back to the source domain, facilitating effective translation between unpaired medical images. We conduct extensive experiments on three public datasets (BraTS, OASIS3, and IXI) and a private Spinal Column dataset to demonstrate the effectiveness of CycleH-CUT and H-CUT. Specifically, CycleH-CUT achieves an average SSIM of 0.926 in the BraTS dataset, an average SSIM of 0.796 on the OASIS3 dataset, an average SSIM of 0.932 on the IXI dataset, and an average SSIM of 0.890 on the private Spinal Column dataset.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信